ANSWER KEY AITS (NEET) Class-XI Part Test-01 PHYSICS Q.1 (4) Q.2 (2) Q.3 (4) Q.4 (1) Q.5 (1) Q.6 (3) Q.7 (2) Q.8 (1) Q Q.11 (1) Q.12 (2) Q.13 (4) Q.14 (2) Q.15 (2) Q.16 (3) Q.17 (4) Q.18 (3) Q Q.21 (4) Q.22 (2) Q.23 (1) Q.24 (3) Q.25 (4) Q.26 (2) Q.27 (3) Q.28 (1) Q		
$\begin{array}{c} \textbf{AITS (NEET)} \\ \textbf{Class-XI} \\ \textbf{Part Test-01} \\ \textbf{PHYSICS} \\ \textbf{Q.1}(4) \textbf{Q.2}(2) \textbf{Q.3}(4) \textbf{Q.4}(1) \textbf{Q.5}(1) \textbf{Q.6}(3) \textbf{Q.7}(2) \textbf{Q.8}(1) \textbf{Q.11}(1) \textbf{Q.12}(2) \textbf{Q.13}(4) \textbf{Q.14}(2) \textbf{Q.15}(2) \textbf{Q.16}(3) \textbf{Q.17}(4) \textbf{Q.18}(3) \textbf{Q.21}(4) \textbf{Q.22}(2) \textbf{Q.23}(1) \textbf{Q.24}(3) \textbf{Q.25}(4) \textbf{Q.26}(2) \textbf{Q.27}(3) \textbf{Q.28}(1) \textbf{Q.28}(1) \\ \end{array}$		
$\begin{array}{c} \textbf{Class-XI} \\ \textbf{Part Test-01} \\ \textbf{PHYSICS} \\ \textbf{Q.1}(4) \textbf{Q.2}(2) \textbf{Q.3}(4) \textbf{Q.4}(1) \textbf{Q.5}(1) \textbf{Q.6}(3) \textbf{Q.7}(2) \textbf{Q.8}(1) \textbf{Q.11}(1) \textbf{Q.12}(2) \textbf{Q.13}(4) \textbf{Q.14}(2) \textbf{Q.15}(2) \textbf{Q.16}(3) \textbf{Q.17}(4) \textbf{Q.18}(3) \textbf{Q.21}(4) \textbf{Q.22}(2) \textbf{Q.23}(1) \textbf{Q.24}(3) \textbf{Q.25}(4) \textbf{Q.26}(2) \textbf{Q.27}(3) \textbf{Q.28}(1) $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
PHYSICS Q.1 (4) Q.2 (2) Q.3 (4) Q.4 (1) Q.5 (1) Q.6 (3) Q.7 (2) Q.8 (1) Q Q.11 (1) Q.12 (2) Q.13 (4) Q.14 (2) Q.15 (2) Q.16 (3) Q.17 (4) Q.18 (3) Q Q.21 (4) Q.22 (2) Q.23 (1) Q.24 (3) Q.25 (4) Q.26 (2) Q.27 (3) Q.28 (1) Q		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.9 (1) Q	.10 (4)
Q.21 (4) Q.22 (2) Q.23 (1) Q.24 (3) Q.25 (4) Q.26 (2) Q.27 (3) Q.28 (1) Q	.19 (1) Q	.20(1)
	Q.29 (4) Q	.30 (3)
Q.31 (3) Q.32 (2) Q.33 (1) Q.34 (3) Q.35 (1) Q.36 (1) Q.37 (2) Q.38 (4) Q	Q.39 (1) Q	.40 (3)
$Q.41(1) \qquad Q.42(4) \qquad Q.43(4) \qquad Q.44(4) \qquad Q.45(4) \qquad Q.46(1) \qquad Q.47(4) \qquad Q48(2) \qquad Q$	Q.49 (3) Q.	.50 (3)
CHEMISTRY		
Q.51 (1) Q.52 (1) Q.53 (4) Q.54 (3) Q.55 (3) Q.56 (2) Q.57 (1) Q.58 (4) Q	Q.59 (3) Q	.60 (2)
Q.61 (3) Q.62 (3) Q.63 (2) Q.64 (3) Q.65 (3) Q.66 (2) Q.67 (1) Q.68 (2) Q	Q.69 (3) Q	.70 (3)
Q.71 (2) Q.72 (3) Q.73 (1) Q.74 (3) Q.75 (3) Q.76 (3) Q.77 (3) Q.78 (4) Q	Q.79 (1) Q	.80 (1)
Q.81(4) $Q.82(2)$ $Q.83(2)$ $Q.84(1)$ $Q.85(3)$ $Q.86(1)$ $Q.87(4)$ $Q.88(1)$ Q	Q.89 (3) Q	.90 (2)
Q.91 (1) Q.92 (2) Q.93 (3) Q.94 (4) Q.95 (1) Q.96 (4) Q.97 (3) Q.98 (3) Q	9.99 (3) Q	.100 (3)
BIOLOGY		
Q.101 (3) Q.102 (2) Q.103 (4) Q.104 (4) Q.105 (2) Q.106 (3) Q.107 (1) Q.108 (4) Q	Q.109 (3) Q	.110 (3)
Q.111 (1) Q.112 (2) Q.113 (1) Q.114 (1) Q.115 (2) Q.116 (3) Q.117 (1) Q.118 (3) Q	Q.119 (4) Q	.120 (2)
Q.121-(1) Q.122 (4) Q.123 (2) Q.124 (1) Q.125 (4) Q.126 (1) Q.127 (1) Q.128 (3) Q	Q.129 (3) Q	.130 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.139 (3) Q	.140 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.149 (3) Q	.150 (2)
Q.151 (2) Q.152-(2) Q.153 (1) Q.154 (1) Q.155-(1) Q.156 (1) Q.157 (2) Q.158 (4) Q	Q.159 (4) Q	.160 (3)
	Q.169 (2) Q	.170 (4)
Q.171 (3) Q.172 (4) Q.173 (3) Q.174 (3) Q.175 (2) Q.176 (3) Q.177 (3) Q.178 (1) Q	.179 (1) Q	.180 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.189 (2) Q	.190 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.199 (1) Q	.200 (2)

HINT AND SOLUTIONS

Q.2

(2)

_

Q.1 (4) $\begin{bmatrix} A \end{bmatrix} = 1$ $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} = \begin{bmatrix} L \end{bmatrix}$ $\begin{bmatrix} T^{-1} \\ B \end{bmatrix} = \begin{bmatrix} L \end{bmatrix}$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{L}^{-1} \mathbf{T}^{-1} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{A}^{3} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{T}^{-3} \\ \mathbf{L}^{-1} \mathbf{T}^{-1} \end{bmatrix} = \begin{bmatrix} \mathbf{L} \mathbf{T}^{-2} \end{bmatrix}$$

PHYSICS

For (A) : A and $\frac{A^3}{B}$ may have same dimension.

For (B) : As A and B have different dimension so exp

$$\left(\frac{A}{B}\right)$$
 is meaningless.

for (C) : AB^2 is meaninfgul. for (D) : AB^{-4} is meaningful

Q.3 (4)

Energy per unit volume

$$=\frac{\left[\mathbf{M}\mathbf{L}^{2}\mathbf{T}^{-2}\right]}{\left[\mathbf{L}^{3}\right]}=\left[\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}\right]$$

Force per unit area =
$$\frac{\left[MLT^{-2}\right]}{\left[L^{2}\right]} = \left[ML^{-1}T^{-2}\right]$$

Product of voltage and charge per unit volume

$$=\frac{\left[\mathbf{M}\mathbf{L}^{2}\mathbf{T}^{-2}\right]}{\left[\mathbf{L}^{3}\right]}=\left[\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}\right]$$

Angular momentum per unit mass = $[L^2T^{-1}]$

Q.4 (1)

SI System is based on seven fundamental units. Rest three depends on mass, length and time.

Q.5

(1)

 $[S] = [M^{1}T^{-2}]$ Let, $[S] = [K^{a}v^{b}t^{c}]$ $[M^{1}T^{-2}] = [M^{1}L^{2}T^{-2}]^{a} [L^{1}T^{-1}]^{b} [T^{1}]^{c}$ or $[M^{1}T^{-2}] = [M^{a}L^{2a+b}T^{-2a+b+c}]$ Comparing powers, a = 1; 2a + b = 0; -2a - b + c = -2Solving, we get a = 1, b = -2, c = -2.

Q.6 (3)

option (3) is dimensionless but remaining three are dimensional quantity (Reynolds no.)

Q.7 (2)

Among the given quantities displacement gradient is unitless quantity.

Q.8 (1)

$$\frac{\Delta P}{P} = \frac{\Delta x}{x} + \frac{\Delta y}{y}$$
$$= \left(\frac{0.6}{12} + \frac{0.2}{5}\right)$$
$$\frac{\Delta P}{P} \times 100 = 9\%$$
Also, $\frac{\Delta D}{D} \times 100 = 9\%$
$$\Delta R = \Delta x + \Delta y = 0.8$$
$$\frac{\Delta R}{R} \times 100 = \frac{0.8}{17} \times 100 = \frac{80}{17}\%$$
$$\frac{\Delta S}{S} \times 100 = \frac{0.8}{7} \times 100 = \frac{80}{7}\%$$

Q.9 (1) Factual.

AITS/NEET/XI/PT-001

Q.10 (4)

Best graph is to plot is as a straight line having same slope and y intercept.

$$h = ut - \frac{1}{2}gt^{2}$$

$$\Rightarrow \frac{h}{t} = u - \frac{1}{2}gt$$

$$Let \frac{h}{t} = y \& t = x$$

$$y = u - \frac{g}{2}x \text{ ie. } y = mx + c$$

Q.11 (1)
velocity
$$v = a + bx$$

 $a = v \frac{dv}{dt} = ab + b^2 x$

dx

so a increases with increase in distance x

$$20 \text{ m/s}$$

$$u = 0 \text{ a = } 2 \text{ m/s}$$

$$u = 0 \text{ b us}$$

$$u = 0 \text{ b us}$$

Considering relative motion of cyclist w.r.t Bus $S_{rel} = 96 \text{ m}$ $U_{rel} = U_{cyclist} - U_{Bus} = 20 - 0 = 20 \text{ m/s}$

 $a_{rel} = a_{cyclist} - a_{Bus} = 0 - (2) = -2 \text{ m/s}^2$ appling IInd equation of motion

$$S_{rel} = U_{rel}t + \frac{1}{2}a_{rel}t^2$$

$$96 = 20t + \frac{1}{2}(-2)t^{2}$$

$$96 = 20t - t^{2}$$

$$\Rightarrow t^{2} - 20t + 96 = 0$$

$$\Rightarrow t^{2} - 12t - 8t + 96 = 0$$

$$\Rightarrow t(t - 12) - 8(t - 12) = 0$$

$$\Rightarrow (t - 8) (t - 12) = 0 \Rightarrow t = 8 \text{ sec}$$

or 12 sec

so, at t = 8 sec, cyclist overtake the bus and again at t = 12 sec, bus overtake the cyclist as bus is accelerated

Q.13 (4)

Distance = Area under v - t graph Distance = 100 m

Avg speed =
$$\frac{100}{5}$$
 = 20m/s

(2)

$$\begin{array}{c} 0 & t_{1} \\ \hline t_{2} & \end{array} School \\ \hline t_{1} = \frac{\text{distance}}{\text{speed}} = \frac{6\text{km}}{2.5\text{km/hr}} = 2.4\text{hr} \\ t_{2} = \frac{\text{distance}}{\text{speed}} = \frac{6\text{km}}{4\text{km/hr}} = 1.5\text{hr} \\ \text{so, average speed} = \frac{\text{Total distance}}{\text{Total time}} = \frac{6+6}{t_{1}+t_{2}} \\ = \frac{12}{2.4+1.5} = \frac{12}{3.9} = \frac{4}{1.3} = \frac{40}{13} \end{array}$$

Q.15 (2)

Q.14

$$S = \sqrt{(4)^2 + (4)^2} = 4\sqrt{2}m$$

Q.16 (3)

$$26 = u + \frac{19a}{2} \qquad ...(1)$$

$$28 = u + \frac{21a}{2} \qquad ...(2)$$

$$\Rightarrow u = 7 \text{ and } a = 2$$

Q.17 (4)

A particle could be moving to the right (positive velocity), in which case the acceleration speeds the particle up. The particle could be moving to the lift (negative velocity), in which case the acceleration is causing the particle to slow down. There is no information about the velocity of the particle, so no conclusion can be made.

Q.18 (3)

$$h = \frac{1}{2}gt^{2}$$

$$\frac{9}{16}h = \frac{1}{2}g(t-1)^{2}$$

$$\Rightarrow \frac{9}{16} \times \frac{1}{2}gt^{2} = \frac{1}{2}g(t-1)^{2}$$

$$\Rightarrow \frac{3}{4}t = t-1$$

$$\Rightarrow 3t = 4t-4$$

$$\Rightarrow t = 4s$$

3 | **Q.19** (1)

$$\begin{array}{c|c} V_{A} & A \\ \hline V_{AB} & V_{B} \\ B \end{array} \equiv \begin{array}{c} A \\ C \\ C \\ B \end{array}$$

$$t = \frac{AC}{V_{A/B}} = \frac{AB \cos 45}{10\sqrt{2}} = \frac{100/\sqrt{2}}{10\sqrt{2}} = 5hr$$

Q.20 (1)

$$x(t) = \int v(t) dt, v(t) = 10 - 5t; x(t) = 10t - \frac{5t^2}{2} + c,$$

at t = 0, x = 5m So x(t) = 10t - 2.5t² + 5

Q.21 (4)

$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{42 + 24 - 12}{\sqrt{81} \times \sqrt{81}}$$
$$\cos \theta = \frac{54}{9 \times 9} = \frac{2}{3}$$
$$\{\theta = \cos^{-1}(2/3)\}$$

Q.22 (2)

$$\frac{R_{max}}{R_{min}} = \frac{P+Q}{P-Q}$$
$$\frac{P+Q}{P-Q} = \frac{2}{1}$$
$$2P-2Q = P+Q$$
$$P=3Q$$

Q.23 (1)

Length of projection on xy plane is = $\sqrt{3^2 + 4^2} = 5$.

Q.24 (3)

as car is moving due to north with 20 km/hr flag points in south. So,

Q.25 (4)

Relative velocity of stone = 5 m/s Relative acceleration of stone = $10 + 5 = 15 \text{ m/s}^2$ \therefore v = u + at = $5 + 15 \times 2 = 35 \text{ m/s}$ Q.26 (2) All the objects outside train will appear to move with same velocity.

$$H = \frac{v^2 \sin^2 \alpha}{2g}$$

$$\dot{\mathbf{k}}_{\alpha}$$
 \mathbf{H} \mathbf{k}_{α}

Angular momentum

 $=(mvcos\alpha)H$

$$= mv\cos\alpha \times \frac{v^2 \sin^2 \alpha}{2g}$$
$$= \frac{mv^3 \cos\alpha \sin^2 \alpha}{2g}$$

Q.28 (1)
$$v \cos 30^\circ = 10 \cos 60^\circ$$

 $10 \cos 60^\circ$

$$\Rightarrow v = \frac{10\cos 60^{\circ}}{\cos 30^{\circ}}$$

Q.29 (4) T = 10 sR = 500

$$H = \frac{u^2 \sin^2 \theta}{2g}$$
$$10 = \frac{2u \sin \theta}{g} \Rightarrow u \sin \theta = 50$$
$$H = \frac{u^2 \sin^2 \theta}{2g} = \frac{2500}{20}$$

H = 125 m

Q.30 (3)

$$R = \frac{u^{2} \sin 2\theta}{g}$$

or $R \propto \sin 2\theta$
or $\frac{R_{1}}{R_{2}} = \frac{\sin 2\theta_{1}}{\sin 2\theta_{2}}$
 $\theta_{1} = 30^{\circ}, \theta_{2} = 40^{\circ}$
So, $\frac{R_{1}}{R_{2}} = \frac{\sin 60^{\circ}}{\sin 40^{\circ}} > 1$
 $\Rightarrow R_{1} > R_{2}$
at 30°;
It will fall beyond enemy target

Q.31

(3)

$$v_{y}^{2} = u_{y}^{2} - 2gh$$

$$\Rightarrow u_{y}^{2} = v_{y}^{2} + 2gh = (2)2 + 2 \times 10 \times 0.4 = 12$$

$$\therefore u_{y} = \sqrt{12} \text{ and } u_{x} = 6$$

$$\tan \theta = \frac{u_{y}}{u_{x}} = \frac{\sqrt{12}}{6} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = 30^{\circ}$$

Q.32 (2)

Magnitude of change in velocity = $2u \sin\theta$ = $2 \times 50 \times \sin 37^{\circ}$

$$=100 \times \frac{3}{5}$$
$$= 60 \text{ m/sec}$$

Q.33 (1)

$$\frac{U_A}{K_A} = 3 \Longrightarrow \frac{mgH_{max}}{\frac{1}{2}m(u\cos\theta)^2} = 3$$

$$\frac{20\left(\frac{u^2\sin^2\theta}{20}\right)}{u^2\cos^2\theta} = 3$$

$$\tan \theta = \sqrt{3} \Longrightarrow \theta = 60^{\circ}$$

Q.34 (3)

$$\frac{\mathbf{v}_1^2}{\mathbf{r}_1} = \frac{\mathbf{v}_2^2}{\mathbf{r}_2} \ ; \Rightarrow \frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{r}_1}{\mathbf{r}_2}} = \frac{1}{\sqrt{2}}$$

Q.35 (1)

r = 100m
v = 200 m/s

$$a_{T} = 100 \text{ m/s}^{2}$$

 $a_{C} = \frac{v^{2}}{r} = \frac{200^{2}}{100} = \frac{200 \times 200}{100} = 400 \text{ m/s}^{2}$
 $a = \sqrt{a_{C}^{2} + a_{T}^{2}}$
 $= 100\sqrt{17} \text{ m/s}^{2}$

SECTION-B

$$n_{1}\left[M_{1}L_{1}^{2}T_{1}^{-2}\right] = n_{2}\left[M_{2}L_{2}^{2}T_{2}^{-2}\right]$$

$$n_{1} = \left[\frac{M_{2}}{M_{1}} \times \left(\frac{L_{2}}{L_{1}}\right)^{2} \times \left(\frac{T_{2}}{T_{1}}\right)^{-2}\right]$$

$$= [5 \times (20)^{2} \times (10)^{-2}] = \left[400 \times 5 \times \frac{1}{100}\right] = 20 \text{ Joule}$$

Q.37 (2)

Q.36

(1)

Shake is unit of time, While light year is the unit of distance Also, [Work] = [Torque].

Q.38 (4)

$$\therefore V = \frac{d}{t}$$

$$\frac{\Delta V}{V} = \frac{\Delta d}{d} + \frac{\Delta t}{t}$$

$$\Delta V = \left(\frac{0.2}{24} + \frac{0.1}{6}\right) \times 4 = 0.1 \therefore \text{ Velocity} = (4 \pm 0.1) \text{ m/s}$$

Q.39 (1)

Power of exponential is dimensionless, $2 \text{ Ct}= M^0 L^0 T^0$ $\text{CT}^1 = M^0 L^0 T^0$ $\text{C} = M^0 L^0 T^{-1}$ and $\frac{dv}{v^{3/2}} = BC$

$$\frac{[L^{1}T^{-1}]}{[L^{1}T^{-1}]^{3/2}} = B[M^{0}L^{0}T^{-1}]$$
$$B = [L^{-\frac{1}{2}}T^{\frac{3}{2}}]$$

Q.40

(3)

The statement given in option (3) is incorrect. for e.g., acceleration has zero dimension of mass (base quantity).

Q.41 (1)

12.589 – 12.4 = 0.189 Rounding off above result upto one decimal place, We get, 0.2.

Q.42 (4)

Let $[F] = [P^{a}M^{b}V^{c}]$ $[M^{1}L^{1}T^{-2}] = [M^{1}L^{-1}T^{-2}]^{a} [M^{1}]^{b} [L^{1}T^{-1}]^{c}$ $[M^{1}L^{1}T^{-2}] = [M^{a+b}L^{-a+c}T^{-2a-c}]$ Comparing powers, a + b = 1; -a + c = 1 & -2a - c = -2Soving we get $a = \frac{1}{3}, b = \frac{2}{3} \& c = \frac{4}{3}.$

At highest point of path, speed of body is zero but acceleration is acting downwards and equal to g.

Q.44 (4)

5

$$v = \frac{ds}{dt} = \beta + 2\gamma t + 4\delta t^{3} = \beta(at \ t = 0)$$
$$a = \frac{dv}{dt} = 2\gamma + 12\delta t^{2} = 2\gamma(at \ t = 0)$$
$$Ratio = \frac{\beta}{2\gamma}$$

Q.45 (4)

In vertical directin (4-direction) $U_y = 0$; $a_y = -gm/s^2$; t = 1 sec $V_y = U_y + a_y t \Rightarrow V_y = -g = -10$ m/s as speed remain same in horizontal direction

So,
$$v_{res} = \sqrt{V_x^2 + V_y^2}$$

= $\sqrt{(10)^2 + (-10)^2} = 10\sqrt{2} = 14.14 \text{ m/s}$

Q.46 (1)

$$\begin{array}{c|c} \uparrow 3 \\ \hline 1 \\ -3 \end{array} \begin{array}{c} 2 \\ 3 \end{array} \begin{array}{c} 4 \\ -3 \end{array} \begin{array}{c} 4 \\ -3 \end{array}$$

Taking the motion from 0 to 2 s u = 0, $a = 3ms^{-2}$, t = 2s, v = ? $v = u + at = 0 + 3 \times 2 = 6ms^{-1}$ Taking the motion from 2 s to 4 s $v = 6 + (-3)(2) = 0ms^{-1}$

Q.47

(4)

$$\vec{\mathbf{S}} = 6\hat{\mathbf{i}} + 8\hat{\mathbf{j}} - 21 \qquad (i)$$
$$= -15\hat{\mathbf{i}} + 8\hat{\mathbf{j}}$$
$$\therefore |\vec{\mathbf{S}}| = 17]$$

6

Q.49 (3)

Comparing the given equation with the standard equation

 $y = x \tan \theta - \frac{1}{2}g \frac{x^2}{u^2 \cos^2 \theta}$ We get, $\tan \theta = 1 \Longrightarrow \theta = 45^{\circ}$ $\frac{1}{2} \times \frac{g}{u^2 \cos^2 45^{\circ}} = 3$ $u^2 = \frac{10}{3}$ $u = \sqrt{\frac{10}{3}}$ $H = \frac{u^2 \sin^2 \theta}{2g}$ $= \frac{10}{3} \times \frac{\sin^2 45^{\circ}}{2 \times 10}$ $H = \frac{1}{12}$ $R \tan \theta = 4H$ $R = \frac{1}{3}$ $H = \frac{1}{3}gT^2$ $T = \frac{1}{\sqrt{15}}$

Q.50 (3)

Displacement, velocity and acceleration change continuously with respect to time because of change in direction.

CHEMISTRY SECTION-A Q.51 (1) $CaCO_3 \rightarrow CaO + CO_2$ $\frac{56 \times 10^3}{56}$ mol Moles of $CaCO_3 = moles of CaO$ $=\frac{56\times10^3}{56}=1\times10^3$ mole wt of CaCO₃ = $1 \times 10^3 \times 100$ g $= 100 \, \text{kg}$ Q.52 (1)molecular weight Equivalent weight = valency factor Q.53 (4) $Fe + 5 CO \longrightarrow Fe (CO)_5$ 41g 70g 41 70 mole 28 56 41 70 L·R· 56×1 14×2 So CO is $L \cdot R \cdot m$ while Fe is excess Reagent 5 mol of CO reacts with 1 mol of Fe 1 mol of CO $\longrightarrow \frac{1}{5}$ mol of Fe 5/2 mole of CO reacts with $\frac{\cancel{2}}{\cancel{2}} \times \frac{1}{\cancel{2}}$ mol of Fe W_{Fe} reacted = $\frac{1}{2} \times 56 = 28g$ W_{Fe} left = 41 - 28 = 13g Q.54 (3)Statement (i) (ii) (iii) and (iv) are correct. Q.55 (3)mall of 1 C - atom = 12 amu1 mass of 1 mol of C - atom $=12\times1amu\times6.02\times10^{23}\times10^{3}$ $= 12 \times 1000 \text{ g} = 12 \text{ kg}$ Q.56 (2)According to the reaction 3 mol of KClO₄ formed from 4 mol of KClO₃ 1 mol of KClO₄ is formed by $\frac{4}{3}$ mol of KClO₃ $\frac{1385}{1385} = 10 \text{ mol of KClO}_4 \longrightarrow \frac{40}{3} \text{ mol of KClO}_3$ from eq II 1 mol of KClO₃ formed by 3mol KClO $\frac{40}{3}$ mole is formed by $\frac{40}{3} \times 3 = 40$ mol of KClO 40 mol of KClO is formed by 40 mol of Cl₂ W_{Cl₂} = 40 × 71 = 2840g

Q.57 (1) MCl is the compound V.F. of metal(m) = 1 Molar mass of MCl = 32.7 + 35.5 = 68.2

Q.58 (4)

(1)
$$n_w = \frac{10}{18} \times 6.022 \times 10^{23} = 3.34 \times 10^{23} \text{ o} - \text{atom}$$

(2) $0.1 \text{ mole } V_2 O_5 = 5 \times 0.1 \times 6.022 \times 10^{23} = 3.011 \times 10^{23} \text{ O} - \text{atom}$
(3) $12 \text{ g } O_3 = \frac{12}{48} \times 6.022 \times 10^{23} \times 3 = 4.51 \times 10^{23}$
(4) $1.12.44 \times 10^{22} \text{ molecules of } CO_2 = 2 \times 12.044 \times 10^{23}$

(4) 1 12.44 × 10²² molecules of CO₂ = 2.4088 × 10²³ O - atom

Q.59 (3)

$$\frac{\mathbf{M}_{1}\mathbf{V}_{1}}{\mathbf{n}_{1}} = \frac{\mathbf{M}_{2}\mathbf{V}_{2}}{\mathbf{n}_{2}}$$
$$\frac{0.1 \times \mathbf{V}_{1}}{2} = \frac{0.05 \times 20}{1}$$
$$\boxed{\mathbf{V}_{1} = 20\text{ml}}$$

Q.60 (2) Statement - I is correct but Statement - II is incorrect

Q.61 (3)

 $3A + 2B + 4C \rightarrow 5D$ $\frac{3}{2}A + B + 2C \rightarrow \frac{5}{2}D$ Given moles $8 \quad 6 \quad 8$ $\rightarrow 0$ (i) For 6 moles of B = 12 mole C is needed
(ii) For $\frac{3}{2}$ mole of A = 2 mole of C is needed
(iii) For 8 moles of A = $\frac{8 \times 2}{3/2} = \frac{32}{3}$ mols of C is needed
(iii) For 8 moles of A = $\frac{5}{2} = \frac{32}{3}$ mols of C is needed
(iii) C is Limiting reagent. $\therefore 2 \text{ mole C produced} = \frac{5}{2} \text{ moles of D}$ $\therefore 8 \text{ moles of C produced} = \frac{5}{2} \times \frac{8}{2} = 10 \text{ mols of D}$ yied % = 80% 10 = 8

Q.62 (3)

$$50 = \frac{18 \times n}{(142 + 18n)} \times 100$$

 $142 + 18n = 36n$
 $n = \frac{142}{18} = 8$

Q.63 (2)

7

 $CaCO_{3} + 2HCI \longrightarrow CaCl_{2} + CO_{2} + H_{2}O$ $0.88 \text{ g of } CO_{2} = \frac{0.88}{44} = 0.02 \text{ mol}$ $0.02 \text{ mol of } CO_{2} \text{ formed by } 0.02 \text{ mol of } CaCO_{3}$ pure $W_{CaCO_{3}} = 0.02 \times 100 = 2g$ % purity $= \frac{2}{4} \times 100 = 50\%$

Q.64 (3)

Oxygen atoms in

$$Na_{2}SO_{4} \cdot 10H_{2}O = \frac{1.61}{322} \times N_{A} \times 14 = \frac{7N_{A}}{100}$$
$$H_{2}SO_{4} = \frac{0.98}{98} \times N_{A} \times 4 = \frac{4N_{A}}{100}$$
$$SO_{3} = \frac{0.08}{80} \times N_{A} \times 3 = \frac{3N_{A}}{1000}$$
$$H_{2}S_{2}O_{7} = \frac{1.78}{178} \times N_{A} \times 7 = \frac{7N_{A}}{100}$$
$$CaCO_{3} = \frac{0.05}{100} \times N_{A} \times 3 = \frac{3N_{A}}{2000}$$

Q.65 (3)

No. of moles of $CO_2 = \frac{W_{CO_2}}{M_{CO_2}} = \frac{0.44}{44} = 0.01$ moles No. of moles of $CaCO_3 = 0.01$ moles $W_{CaCO_3} = 1$ g. % purity of sample $= \frac{1}{1.25} \times 100 = 80\%$

Q.66 (2)

No. of moles of A = $\frac{X}{20}$

No. of moles of $B = \frac{2X}{40} = \frac{X}{20} = Y$ So same moles will contains same no. of atoms. OR As we know

 $mole \times Na = No. of atoms$ So according to given conditions,

$$\mathbf{X} \times \frac{\mathbf{Na}}{20} = \mathbf{Y}$$

Therefore $2X \times \frac{Na}{40} = Y$ Hence 2X g of B will contain Y atoms.

Q.67 (1)

$$\frac{T_{He}}{T_{Lj^{2+}}} = \frac{\left(\frac{n^3}{Z^2}\right)_{He^+}}{\left(\frac{n^3}{Z^2}\right)_{Lj^{2+}}} = \frac{\left(\frac{2^3}{2^2}\right)}{\left(\frac{4^3}{3^2}\right)} = \frac{9}{32}$$

Q.68 (2)

Greater the value of $(n + \ell)$ more will be the energy of orbital. If two orbitals have same $(n + \ell)$ value then the orbital having greater n value have greater energy.

Q.69

(3)

Electronic configuration of Fe $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ n = 3, $\ell = 2 \Longrightarrow 3d$ $6 e^-$ are present in 3d

Q.70 (3) $_{19}K \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ no. of e⁻ when $\ell = 1$, 6+6=12p subshell. spherical orbit is symmetrical having zero angular node. 10 e⁻ are present in d-subshell

Q.71 (2)

$$\frac{\frac{1}{\left(\lambda_{\text{He}^{+}}\right)} = R\left(2\right)^{2} \left[\frac{1}{2^{2}} - \frac{1}{\infty}\right]}{\left(\frac{1}{\lambda_{\text{Li}^{+2}}}\right) = R\left(3\right)^{2} \left[\frac{1}{3^{2}} - \frac{1}{4^{2}}\right]} \Rightarrow \frac{\lambda_{\text{Li}^{+2}}}{x} = \frac{1}{7} \times 16$$
$$\lambda_{\text{Li}^{+2}} = \frac{16x}{7}$$

Q.72 (3)

$$\frac{\underline{E}_{1}}{\underline{E}_{2}} = \frac{\underline{hc}}{\lambda_{1}} \times \frac{\lambda_{2}}{\underline{hc}} = \frac{400}{800}$$
$$\overline{\underline{E}_{2} = 2\underline{E}_{1}}$$

Q.73 (1) $m = 10^{-10} g = 10^{-13} kg$ $V = 10^{-8} m$

AITS/NEET/XI/PT-001

$$\Delta V = 10^{-8} \times 10^{-6} = 10^{-14}$$
$$\Delta n = \frac{h}{4\pi m \Delta V}$$
$$\Delta V = \frac{6.626 \times 10^{-34} \text{ J/s}}{4 \times 3.14 \times 10^{-30} \times 10^{-14}} = 5.27 \times 10^{-8} \text{ m}$$

Q.74

(3)

$$\Delta U = \frac{1}{100} \times 3 \times 10^8$$

= 3 × 10⁶
$$\Delta n = \frac{0.529 \times 10^{-34}}{9 \times 10^{-31} \times 3 \times 10^6}$$

= 2.45 × 10⁻¹⁰ m.

Q.75 (3)

Visible line shown in Balmer region = (n) = 2no. of lines in H spectrum = 5 - 2 = 3

Q.76 (3)
no. of orbitals =
$$n^2$$

= $(4)^2 = 16$

Q.77 (3)

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E} = \frac{2 \times 10^{-25}}{8 \times 10^{-18}} = 0.250 \times 10^{-7} \text{ m}$$

$$= 250 \times 10^{-10} \text{ m}$$

$$= 250 \text{ Å}$$

Q.78 (4)

Orbital angular momentum =
$$\frac{h}{2\pi}\sqrt{\ell(\ell+1)}$$

3p subshell
 $\ell = 1$
 $\frac{h}{2\pi}\sqrt{l(1+1)} = \sqrt{2}\frac{h}{2\pi}$

Q.79 (1)

$$\lambda = \frac{h}{mv} [Mass(m) = 1 \text{ mg or } 10^{-6} \text{ kg}]$$
$$\lambda = \frac{6.63 \times 10^{-34}}{10^{-6} \times 20}$$
$$\lambda = 3.3 \times 10^{-29} \text{ m}$$

Q.80 (1)

$$\Delta E = -13.6 \ Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

The largest absorbtion of energy will be for the transition n = 1 to n = 2

$$\Delta E = -13.6 Z^2 \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right]$$

 ΔE for the transition n = ∞ to n = 1 is athough maximum but in this transition energy will be released.

Q.81 (4)

$$E = -13.6 \frac{1}{n^2} - 13.6 \times \frac{(3)^2}{(3)^2} = -13.6 \text{ eV}.$$

 z^2

 2^{nd} excited state means [n = 3]

Q.82 (2)

Q.83

(2) $Mn(25) = 1s^2, 2s^2, 2p^6, 3s^2 3p^6, 4s^2, 4s^2$ for 3d electrons $(\ell + m)$ value = 2 No. of $3d^5$ electrons = 5

Q.84 (1)

> P_x orbital lies along the x axis. Hence the probability of finding an electron is zero in the yz plane.

Q.85 (3)

I. E. of the elelment is very low and IInd I.E. is very high i.e. the difference b/w Ist and IInd I.E. is large hence we can conclude that after removal of 1e- the element must have acquired noble gas configuration. The 2nd, 3rd and 4th I.E. does not show much difference. On the basis of this observation electronic configuration of the element may be 1s² 2s² 2p⁶ 3s¹

SECTION-B

Q.86 (1)

$$2NH_{3} + CO_{2} \rightarrow NH_{2}COONH_{4}$$

$$2 \text{ mol} \quad 1 \text{ mol}$$
Mass
$$2 \times 17 \quad 1 \times 44$$

$$34 \text{ g} \quad 44 \text{ g}$$
Ratio =
$$\frac{34}{44} = \frac{17}{22}$$

С	Н
80%	20%

D 1 1	80	20
Relative moles	12	1
Simplest ratio	1:3	
CH ₃ empirical formu	la	
molecular formula n	hay be $C_3 H_0$	

Q.88 (1)

ĿR

 $4A+2B+3C \longrightarrow A_4B_2C_3$ 1mol 0.6 0.76m initial 1mol 0.6 0.76mol $\frac{1}{4} = 0.25, \quad \frac{0.6}{2} = 0.3, \quad \frac{0.76}{3} = 0.253$ A is LR 4 mol of A gives 1 mole of $A_4B_2C_3$ 1 mol of A gives $\frac{1}{4}$ mol of $A_4 B_2 C_3$

Q.89 (3)

$$n_{H_{2}O} = \frac{18}{18} = 1$$

∴ No. of electrons = 1 × N, × 10 = 6.023 × 10²⁴

Q.90 (2) $20 \times 80 = n \times 32$ n = 50 molecular of O₂

Q.91 (1)no. of atoms In 1 mole = Atomicity $\times N_{A}$ $=45 \times 6.02 \times 10^{23}$

(2)

$$2SO_{2} + O_{2} \rightarrow 2SO_{3}$$

$$t = 0 \quad 10 \mod 12 \mod 0$$

$$t \sec \quad 10 - 8 \quad 12 - 4 \quad 8 \mod 2 \mod 8 \mod 1$$

$$\therefore ratio = \frac{SO_{2}}{SO_{2}} = \frac{2}{8} = \frac{1}{4}$$

Q.92

Elements	%	At. mass	molar ratio	Simplest ratio
С	38.71	12	$\frac{38.71}{12} = 3.22$	1
Н	9.67	1	$\frac{9.67}{1} = 9.67$	3
0	51.62	16	$\frac{51.67}{16} = 3.22$	1

Therefore, empirical formula of the compound is CH₃O.

Q.94 (4)

Aufbau & then is Rule as ns subshell is not completely filled & unpaired e⁻ has opposite spin.

Q.95 (1)

. ,			
no. of e^{-} in the orbited for $(n + \ell) \le 3$			
$1s^{2}$	$2s^2$	2p ⁶	3s ²
n = 1	n = 2	n = 2	n = 3
$\ell = 0$	$\ell = 0$	$\ell = 1$	$\ell = 0$
These will contain 12 e ⁻			

Q.96 (4)

3p subshell n = 3, ℓ = 1, m = -1, 0, +1, s = ± 1/2 (any)

Q.97 (3)

 $\underline{\lambda} = \frac{h}{P}$ (debroglie) lyman \rightarrow uv region

 $\Delta n \cdot \Delta p \ge \frac{h}{4\pi}$ (Heisen berg) paschen \rightarrow IR region

Q.98 (3)

 $E = -320 \left(\frac{z}{n}\right)^2$ $-20 = -320 \times \frac{1^2}{n^2}$ $n^2 = 16, \qquad n = 4$

Q.99 (3)

For 'g' subshell, $\ell = 4$ no. of $e^- = 2(4\ell + 1)$ $= 18 e^-$

Q.100 (3)

 $\Delta x = \frac{h}{4\pi . \Delta P} = \frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 10^{-5}} = 5.27 \times 10^{-30} \, \text{m}$

BIOLOGY-I SECTION-A

Q.101 (3)

Deuteromycetes are called imperfect fungi.

Q.102 (2)

A virus is larger than sub viral agents/particles. Viroids are infectious RNA particles. They lack protein. They cause diseases in plants only. Viruses have proteinaceous capsid.

10

Q.103 (4)

All viruses have capsid. Bacterial viruses are known as b

Bacterial viruses are known as bacteriophages, they have capsid (protein coat) & genetic material, usually dsDNA.

Q.104 (4)

Paramoecium has two nuclei. Paramoecium is a ciliated protozoan

Q.105 (2)

Euglenoids lack cell wall.

Slime moulds are heterotrophic (Saprophytic). Protozoans are predators & parasites. Chrysophytes include diatoms and desmids which are mostly photosynthetic.

Q.106 (3)

Mycoplasma are smallest living organisms. They lack cell wall and can survive without oxygen. Methanogens are responsible for production of biogas.

Q.107 (1)

Q.108 (4)

Malaria is caused by *Plasmodium* which is a sporozoan protozoa.

- **Q.109** (3)
- **Q.110** (3)
- **Q.111** (1)
- **Q.112** (2)
- **Q.113** (1)
- **Q.114** (1)
- **Q.115** (2)
- **Q.116** (3)
- **Q.117** (1)
- **Q.118** (3)

Q.119 (4)

Heterosporous pteridophytes show event precursor to the seed habit.

Q.120 (2)

Q.121 (1)

	1	1	
Q.122	(4) In gymnosperms, the transfer of pollen grains occur	Q.141	(2)
Q.123	(2)Chemotaxonomy includes DNA sequencing 'to identify	Q.142 Q.143	(4) Long, cylindrical unbranched stem in Cycas.
0 124	or classify organisms.	Q.144	(2)
Q.124	Stems are usually unbranched in <i>Cycas</i> . Stems are branched in <i>Cedrus</i> and <i>Pinus</i> .	Q.145	(4) <i>Marchantia</i> is a liverwort. Liverworts have completely dependent sporophyte on gametophyte
Q.125	(4)<i>Polysiphonia</i> is a red alga.: It lacks motile stages. It reproduces by non-motile gametes and spores.	Q.146	(2)<i>Fucus</i> is a brown algae and shows diplontic life cycle pattern.
Q.126 Q.127	(1)(1)	Q.147	(4) Highly reduced male gametophytes are also present in angiosperms living in different habitats.
Q.128	(3)	Q.148	(1)
Q.129	(3)	Q.149	(3) Brown algae possess the photosynthetic pigments chl
Q.130	(3)		a and chl-c and fucoxanthin.
Q.131	(1)	Q.150	(2)
Q.132	(1)	0.1.51	BIOLOGY-II SECTION-B
Q.133	(3)In Pteridophyte, the female gametophyte is retained on the parent sporophyte for variable periods. The development of the provide intervence and hence tables.	Q.151	(2) Both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion. All living organisms have the ability to sense their surroundings or environment and respond to these environmental
	development of the zygotes into young embryos take		sumuli which could be physical, chemical or biological.

precursor to the seed habit considered an important step in evolution.

place within the female gametophytes. This event is a

SECTION-B

- Q.135 (2)
- Q.136 (2)
- Q.137 (1)
- Q.138 (2)
- Q.139 (3)
- Q.140 (4)

Dinoflagellates are flagellated, mostly marine photosynthetic protist.

Dinoflagellates have two flagella, one is transverse and another is longitudinal

Q.152

(2)

- Q.153 (1) Division - Angiospermae
- Q.154 (1)

Q.155 (1)

Q.156 (1)

> Biological names are generally in latin and written in italics. They are latinised or derived from latin irrespective of their origin. When hand written, generic and specific epithet both the words in a biological name are separately underlined or printed in italics showing their latin origin.

> All organisms, therefore are aware of their

surroundings. Human beings also show selfconsciousness. Consciousness therefore becomes the

defining property of living organisms.

AITS/NEET/XI/PT-001

Q.157	(2)	Q.169	(2) Heart and blood vessels are present in open and dosed
Q.158	(4)		circulatory system.
Q.159	(4)		while it is ventral in chordates. Nerve cord is ventral in non-chordates but dorsal in position in chordates. Post
Q.160	(3)		anal tail is a feature of chordates. Gill slits are lateral in position in chordates.
Q.161	(3) The given statement is true for Aschelminthes, for e.g. <i>Wuchereria</i> .	Q.170	(4) Clarias is a bony fish.
Q.162	(3)	Q.171	(3)
Q.163	(3) Union of gametas accurs in water	Q.172	(4)
	Sponges reproduce asexually by fragmentation and sexually by formation of gametes. Fertilisation is	Q.173	(3)
	internal.		(3)
Q.164	(3) Identify a bird	Q.175	(2)
	<i>Crocodilus</i> belongs to class Reptilia while <i>pavo</i> belongs to class Aves.	Q.176	(3)
0 165		Q.177	(3)
Q.105	Development in mammals is direct with few exceptions Vivinarity is seen in many taxa of animals Monotremes	Q.178	(1)
	are a group of mammals that lay eggs .e.g. : Platypus and Echidna.	Q.179	(1)
0 166	(2)	Q.180	(2)
Q.100	The term cyclostome refers to "round mouth".	Q.181	(2)
	grouped under agnatha. Mouth is ventral, suctorial and is circular	Q.182	(3)
0.167	(3)	Q.183	(3)
Q1 =07	Gizzard is also called gastric mill. Gizzard in many birds is the hind part of the stomach	Q.184	(2)
	which is especially modified for grinding food. It is located between the saclike crop and the intestine. It	Q.185	(1)
	has a thick muscular wall and may contain small stones,	0.196	SECTION-B
	of seeds and other foods.	Q.100	(2)
Q.168	(2)	Q.187	(3)
	Pneumatic bones have air cavities to reduce weight of flying birds. Neophron i.e. vulture is a flying bird that has both pneumatic bones and- preen/oil gland. Air sacs in birds	Q.188	(1) Systematics, study of diversity amongst groups of organisms.
	are avascular and meant for storage of air but not exchange of gases.	Q.189	(2)
AITS/N	EET/XI/PT-001	I	

Q.190 (3)

Author or discoverer's name is not Latinised in biological nomenclature.

In binomial epithet, author name is not printed in italics. Only genus and species names are printed in italics to show their Latin origin.

- **Q.191** (2)
- **Q.192** (3)

Q.193 (4)

Ancylostoma is commonly known as hookworm and belongs to the phylum Aschelminthes, while *Saccoglossus* is commonly known as tongueworm and belongs to phylum Hemichordata.

Q.194 (2)

In cartilaginous (chondrichthyes) fishes placoid scales are present which backwardly directed. Cycloid, ctenoid and ganoid scales are observed in bony (ostrichthyes) fishes.

Q.195 (1)

In echinoderms, nervous system is not very well developed.

Q.196 (1)

Q.197 (1)

Select a cartilaginous fish.

Air/swim bladder helps to maintain buoyancy in bony fish. Dog fish has to swim continuously to avoid sinking.

Q.198 (3)

These organisms occur in exclusively marine conditions.

Saccoglossus a hemichordate, has proboscis gland as its excretory organ. Gills are meant for respiration in hemichordates. In molluscs, gills serve both the function of respiration and excretion!

Q.199 (1)

Metamerism refers to presence of segments and probable repeat of organs.

Wuchereria is a filarial worm, where excretory pore eliminates nitrogenous waste. Wastes present in alimentary canal are eliminated through anus. Pseudocoelom, absence of segmentation and presence of bilateral symmetry are features of Aschelminthes.

Q.200 (2)