|                                    |                      |                                    | A                                  | NSW                                | ER K                             | EY                                 |                      |                                   |                                    |
|------------------------------------|----------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|------------------------------------|----------------------|-----------------------------------|------------------------------------|
|                                    |                      | A                                  | ITS (N                             | EET)                               | <b>Final</b> 7                   | Frack (                            | XI)                  |                                   |                                    |
|                                    |                      |                                    |                                    |                                    | Test-04                          |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    | PH                                 | YSICS                            |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    |                                    | TION-A                           |                                    |                      |                                   |                                    |
| <b>Q.1</b> (3)<br><b>Q.11</b> (3)  | Q.2 (4)<br>Q.12 (2)  | Q.3 (2)<br>Q.13 (2)                | Q.4(1)                             | Q.5 (4)<br>Q.15 (4)                | Q.6(1)<br>Q.16(1)                | Q.7(4)                             | Q.8(1)               | <b>Q.9</b> (4)<br><b>Q.19</b> (4) | Q.10(3)                            |
| <b>Q.11</b> (3)<br><b>Q.21</b> (4) | Q.12(2)<br>Q.22(2)   | Q.13(2)<br>Q.23(1)                 | <b>Q.14</b> (3)<br><b>Q.24</b> (4) | Q.13 (4)<br>Q.25 (2)               | Q.10(1)<br>Q.26(1)               | <b>Q.17</b> (2)<br><b>Q.27</b> (1) | Q.18 (2)<br>Q.28 (1) | Q.19(4)<br>Q.29(2)                | <b>Q.20</b> (1)<br><b>Q.30</b> (1) |
| Q.31 (2)                           | Q.32 (2)             | Q.33 (4)                           | <b>Q.34</b> (3)                    | Q.35 (3)                           | <b>Q</b> ,=0 (1)                 | <b>Q</b> (1)                       | <b>Q</b> ,0 (1)      | <b>Q</b> > (-)                    |                                    |
|                                    |                      |                                    |                                    | SEC                                | TION-B                           |                                    |                      |                                   |                                    |
| Q.36 (4)                           | <b>Q.37</b> (3)      | Q.38(3)                            | <b>Q.39</b> (4)                    | Q.40 (3)                           | <b>Q.41</b> (2)                  | <b>Q.42</b> (1)                    | <b>Q.43</b> (1)      | <b>Q.44</b> (2)                   | <b>Q.45</b> (3)                    |
| <b>Q.46</b> (2)                    | <b>Q.47</b> (3)      | <b>Q.48</b> (2)                    | Q.49 (2)                           | <b>Q.50</b> (2)                    |                                  |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    | -                                  | MISTRY<br>TION-A                 |                                    |                      |                                   |                                    |
| Q.51 (2)                           | <b>Q.52</b> (1)      | Q.53(2)                            | <b>Q.54</b> (4)                    | Q.55 (2)                           | <b>Q.56</b> (4)                  | <b>Q.57</b> (2)                    | <b>Q.58</b> (4)      | <b>Q.59</b> (1)                   | <b>Q.60</b> (3)                    |
| <b>Q.61</b> (4)                    | <b>Q.62</b> (2)      | <b>Q.63</b> (4)                    | <b>Q.64</b> (3)                    | <b>Q.65</b> (4)                    | <b>Q.66</b> (4)                  | <b>Q.67</b> (3)                    | <b>Q.68</b> (4)      | <b>Q.69</b> (1)                   | <b>Q.70</b> (1)                    |
| <b>Q.71</b> (2)<br><b>Q.81</b> (2) | Q.72 (4)<br>Q.82 (1) | <b>Q.73</b> (4)<br><b>Q.83</b> (3) | <b>Q.74</b> (2)<br><b>Q.84</b> (3) | <b>Q.75</b> (2)<br><b>Q.85</b> (4) | <b>Q.76</b> (2)                  | <b>Q.77</b> (3)                    | <b>Q.78</b> (3)      | <b>Q.79</b> (1)                   | <b>Q.80</b> (3)                    |
| <b>Q.01</b> (2)                    | <b>Q.02</b> (1)      | <b>Q.03</b> (3)                    | <b>Q.04</b> (3)                    | <b>Q.05</b> (4)                    |                                  |                                    |                      |                                   |                                    |
| <b>Q.86</b> (1)                    | <b>Q.87</b> (2)      | <b>Q.88</b> (1)                    | <b>Q.89</b> (1)                    | <b>SEC</b><br><b>Q.90</b> (4)      | <b>TION-B</b><br><b>Q.91</b> (3) | <b>Q.92</b> (3)                    | <b>Q.93</b> (4)      | <b>Q.94</b> (2)                   | <b>Q.95</b> (2)                    |
| <b>Q.96</b> (3)                    | <b>Q.97</b> (2)      | Q.98 (2)                           | Q.99 (2)                           | Q.100 (3)                          | <b>Q.71</b> (3)                  | <b>Q.72</b> (3)                    | Q.95(4)              | Q.94(2)                           | <b>Q.75</b> (2)                    |
|                                    |                      |                                    |                                    |                                    | LOGY-I                           |                                    |                      |                                   |                                    |
| 0 101 (0)                          | 0.100 (0)            | 0.102 (0)                          | 0 104 (0)                          |                                    | TION-A                           | 0.105 (1)                          | 0 100 (2)            | 0 100 (2)                         | 0 110 (0)                          |
| Q.101 (2)                          | Q.102 (2)            | Q.103 (2)                          | Q.104 (2)                          | Q.105 (3)                          | Q.106 (2)                        | <b>Q.107</b> (1)                   | Q.108 (3)            | Q.109 (3)                         | Q.110 (3)                          |
| Q.111 (4)                          | Q.112 (2)            | Q.113 (2)                          | Q.114 (4)                          | Q.115 (4)                          | Q.116 (4)                        | Q.117 (4)                          | Q.118(1)             | Q.119 (4)                         | Q.120 (3                           |
| Q.121 (3)<br>Q.131 (3)             | Q.122(2)             | Q.123 (4)                          | Q.124 (2)<br>Q.134 (4)             | Q.125 (4)<br>Q.135 (3)             | <b>Q.126</b> (1)                 | <b>Q.127</b> (2)                   | <b>Q.128</b> (2)     | <b>Q.129</b> (3)                  | <b>Q.130</b> (2                    |
| <b>Q.131</b> (3)                   | <b>Q.132</b> (3)     | <b>Q.133</b> (1)                   | <b>Q.134</b> (4)                   |                                    |                                  |                                    |                      |                                   |                                    |
| 0.10((1))                          | 0.105 (0)            | 0.129 (4)                          | 0.120 (2)                          |                                    | TION-B                           | 0.142 (0)                          | 0.142 (0)            | 0.144 (2)                         | 0 1 45 (0                          |
| Q.136(1)                           | Q.137 (2)            | Q.138 (4)                          | Q.139 (3)                          | Q.140(1)                           | <b>Q.141</b> (4)                 | <b>Q.142</b> (3)                   | <b>Q.143</b> (2)     | <b>Q.144</b> (3)                  | <b>Q.145</b> (2                    |
| <b>Q.146</b> (4)                   | <b>Q.147</b> (4)     | <b>Q.148</b> (2)                   | <b>Q.149</b> (1)                   | <b>Q.150</b> (3)                   |                                  |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    |                                    | LOGY-II<br>TION-A                |                                    |                      |                                   |                                    |
| <b>Q.151</b> (2)                   | Q.152(2)             | <b>Q.153</b> (3)                   | <b>Q.154</b> (3)                   | <b>Q.155</b> (1)                   | <b>Q.156</b> (2)                 | <b>Q.157</b> (1)                   | Q.158(2)             | <b>Q.159</b> (1)                  | <b>Q.160</b> (2                    |
| <b>Q.161</b> (4)                   | <b>Q.162</b> (3)     | <b>Q.163</b> (4)                   | <b>Q.164</b> (3)                   | Q.165 (2)                          | <b>Q.166</b> (3)                 | <b>Q.167</b> (4)                   | <b>Q.168</b> (1)     | <b>Q.169</b> (3)                  | <b>Q.170</b> (3                    |
| <b>Q.171</b> (3)                   | <b>Q.172</b> (2)     | <b>Q.173</b> (1)                   | <b>Q.174</b> (3)                   | <b>Q.175</b> (3)                   | <b>Q.176</b> (4)                 | <b>Q.177</b> (4)                   | <b>Q.178</b> (1)     | <b>Q.179</b> (2)                  | <b>Q.180</b> (1                    |
| Q.181(2)                           | <b>Q.182</b> (2)     | <b>Q.183</b> (4)                   | Q.184 (2)                          |                                    |                                  |                                    |                      |                                   |                                    |
| <b>Q.185</b> (4)                   |                      |                                    |                                    | SEC                                | TION-B                           |                                    |                      |                                   |                                    |
| <b>Q.186</b> (4)                   | <b>Q.187</b> (2)     | <b>Q.188</b> (4)                   | <b>Q.189</b> (2)                   | <b>Q.190</b> (1)                   | <b>Q.191</b> (2)                 | <b>Q.192</b> (2)                   | <b>Q.193</b> (1)     | Q.194(2)                          | <b>Q.195</b> (4                    |
| <b>Q.196</b> (4)                   | <b>Q.197</b> (2)     | <b>Q.198</b> (2)                   | <b>Q.199</b> (1)                   | <b>Q.200</b> (4)                   |                                  |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    |                                    |                                  |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    |                                    |                                  |                                    |                      |                                   |                                    |
|                                    |                      |                                    |                                    |                                    |                                  |                                    |                      |                                   |                                    |

## PHYSICS

# SECTION-A

- **17-Calorimetry** (3)
- Q.1

A gas may under go through infinite processes such process defines different value of specific heat.

#### Q.2 (4)



 $S \rightarrow Solid$  $L \rightarrow Liquid$ 

 $V \rightarrow Vapour$ 

Q.3 (2)

$$\because \left(\frac{\Delta Q}{\Delta t}\right)_{A} = \left(\frac{\Delta Q}{\Delta t}\right)_{B}$$
$$\therefore \frac{K_{A}A(100-70)}{30} = \frac{K_{B}A(70-35)}{70}$$
$$\Rightarrow K_{A} = \frac{K_{B}}{2} \Rightarrow \frac{K_{A}}{K_{B}} = \frac{1}{2}$$

Transfer of heat due to radiation doesn't require any medium.

Q.5 (4)

$$S = \frac{\sigma \times 4\pi R^2 \times T^4}{4 \times D^2}$$
$$S \propto R^2 T^4$$
$$\frac{S_1}{S_1} = \left(\frac{2R}{R}\right)^2 \times \left(\frac{2T}{T}\right)^4 = 64$$

$$\frac{52-36}{10} = K \left[ \frac{52+36}{2} - 20 \right] \qquad \dots (1)$$
$$\frac{36-T}{10} = K \left[ \frac{36+T}{2} - 20 \right] \qquad \dots (2)$$

On solving equation (1) and (2)  $T = 28^{\circ}C$ 

Q.7 (4)

## AITS/NEET/Final Track(XI)/PT-004

$$\frac{\mathrm{K.E}_{\mathrm{R}}}{\mathrm{E}} = \frac{2 \times \frac{1}{2} \mathrm{KT}}{7 \times \frac{1}{2} \mathrm{KT}} = \frac{2}{7}$$

Q.8

(1) For ideal gas PV = nRT PV = RTn = 1Slope of PV versus T graph is R PV = 8.314 TSo with respect to PV = T graph PV = 8.314 T is having more slope So answer (1)

$$P^6V^5 = const.$$

(4)

$$\Rightarrow PV^{\frac{3}{6}} = const$$

Now 
$$C = C_v + \frac{R}{1-x} = \frac{3}{2} + R \frac{R}{1-\frac{5}{6}} \frac{15R}{2}$$

Heat supplied, 
$$Q = nC\Delta T$$
  
=  $n\left(\frac{15R}{2}\right)(5) = 37.5 nR.$ 

$$v_{\rm rms} = \sqrt{\frac{3RT}{M_{\rm w}}}$$

$$v_{\rm sound} = \sqrt{\frac{\gamma RT}{M_{\rm w}}}$$
where  $\gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \left(\frac{4}{3}\right)$ 

$$\frac{v_{\rm sound}}{v_{\rm rms}} = \sqrt{\frac{4}{3 \times 3}} = \frac{2}{3}$$

$$v_{\rm sound} = \frac{2}{3} v_{\rm rms}$$

Q.11 (3)

$$V_{ms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3PV}{M}}$$
  
M = const.

$$M = cons$$

$$\Rightarrow V_{rms} \alpha \sqrt{PV} \Rightarrow \frac{V_{rms_2}}{V_{rms_2}} = \sqrt{\frac{2 \times 2}{1 \times 1}} = \frac{2}{1}$$

**Q.12** (2)  
$$Q_{\rm P} = nC_{\rm P} (T_2 - T_1)$$

$$140 = n \frac{7}{2} R(T_2 - T_1)$$
  
w = nR (T\_2 - T\_1) = 40 J

Q.13 (2)

$$E_{avg} = \frac{fKT}{2} \text{ for per molecule}$$
$$V_{rms} = \sqrt{\frac{3RT}{M}}$$

Q.14

PV = nRT $\frac{V}{T} = \frac{nR}{P}$ 

(3)

I P  
Slope = 
$$\frac{n}{P}$$
  
tan 60°  $\frac{n_A}{P_A}$ 

$$\tan 30^\circ \frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{B}}} \quad \therefore \quad \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}} = 1$$

Q.15 (4)  $\therefore$  PV = nRT or PV = RT PT

$$P = \frac{KI}{V}$$

Now, finally.

$$P' = \frac{RT'}{V'} = \frac{R \times 1.1T}{1.05V} = \frac{1.1}{1.05}P$$

**Q.16** (1)  $200 = Q_1 - 200 = Q_2 - 100 \Rightarrow Q_1 = 400 \text{ J}, Q_2 = 300 \text{ J}$ 

Q.17 (2) At P = ConstantAW 2

$$\Rightarrow \frac{\Delta W_{p}}{\Delta Q_{p}} = \frac{2}{f+2} \Rightarrow \frac{\Delta W}{140} = \frac{2}{5+2}$$
$$\Rightarrow \Delta W = 40 \text{ J}$$

**Q.18** (2)

Sol.  $\Delta U = \frac{nfR\Delta T}{2} = 0$   $\Rightarrow \Delta T = 0 \Rightarrow$  Isothermal process  $P \propto \frac{1}{V}$  3

**Q.19** (4)

work done = Area under the P-V curve

W = 
$$\frac{1}{2}$$
 (80 × 10<sup>3</sup>) (250 × 10<sup>-6</sup>) = 10 J  
Since the arrow is anticlockwise,  
∴ work done = -10 J

**Q.20** (1)

$$\mathbf{U} = \frac{\mathbf{f}}{2} \mathbf{n} \mathbf{R} \mathbf{T}$$

For isothermal process, to increase internal energy, no. of molecules should be increased.

**Q.21** (4)

$$\mathbf{Y} = \frac{\mathrm{FL}}{\mathrm{A}(\Delta \ell)} = \frac{\mathrm{WL}}{\pi \mathrm{r}^2 \Delta \ell}$$
$$\therefore \Delta \ell = \frac{\mathrm{WL}}{\pi \mathrm{r}^2 \mathbf{Y}}$$

 $\Delta \ell$  will be minimum for that wire whose  $\frac{W}{r^2}$  is minimum.

**Q.22** (2)

$$\frac{r_{1}}{r_{2}} = b$$

$$\frac{\ell_{1}}{\ell_{2}} = a$$

$$\frac{\gamma_{1}}{\gamma_{2}} = c$$

$$\Delta \ell_{1} = \frac{(3mg)\ell_{1}}{A_{1}Y_{1}}$$

$$\Delta \ell_{2} = \frac{(2mg)\ell_{2}}{A_{2}Y_{2}}$$

$$\frac{\Delta \ell_{1}}{\Delta \ell_{2}} = \frac{3\ell_{1}}{2\ell_{2}A_{1}Y_{1}} \times A_{2}Y_{2} = \frac{3}{2}\frac{a}{b^{2}c} = \frac{3a}{2b^{2}c}$$
Q.23 (1)

Bulk modulus,  $B = \frac{P_0}{\Delta V / V_0}$  but  $\Delta V = \gamma V_0 \Delta t = 3\alpha V_0 \Delta t$  so  $\Delta t = \frac{P_0}{3B\alpha}$  **Q.24** (4)

 $\gamma = \frac{\text{Stress}}{\text{Strain}} \Rightarrow \text{Stress} = \gamma \times \text{Strain}$  $= 2 \times 10^{11} \times 10^{-3} = 2 \times 10^8 \text{ N/m}^2$  $\text{Now} \Rightarrow \text{Stress} = \frac{\text{Weight}}{\text{Area}}$  $\Rightarrow \text{Weight} = \text{Stress} \times \text{Area}$ 

Weight =  $3 \text{ Weight} = 3 \text{ Hess} \times \text{ Area}$ Weight =  $2 \times 10^8 \times \pi (0.5 \times 10^{-3})^2$ = 157 N

Q.25 (2)

When temperature rises, T increases and hence clock runs slow or loses time.

**Q.26** (1)

$$\rho = \frac{M}{V} \implies \rho \propto V^{-1}$$
$$\frac{\Delta \rho}{\rho} = -1 \frac{\Delta V}{V}$$
$$\frac{\Delta \rho}{\rho} = -\gamma \Delta T = -49 \times 10^{-5} \times 30$$
$$\frac{\Delta \rho}{\rho} = -1.47 \times 10^{-2}$$

**Q.27** (1)

Slope of P - y graph = +  $\rho g$ 

$$\frac{3}{4} = \rho \times 10$$
  
:.  $\rho = \frac{3}{4 \times 10} \frac{0.30}{4} 0.075 \text{ kg/m}^3$ 

(1)(I) In case of mercury, Cohesive force is much greater than that of water.(II) Excess pressure -

$$\Delta \mathbf{P} = \frac{4\mathbf{T}}{\mathbf{r}}$$

**Q.29** (2)

Q.28

The velocity of all fluid particles crossing a given position is constant.

4

**Q.30** (1)

Rate of flow 
$$\frac{dV}{dt} = Av$$
  
 $\Rightarrow \frac{3000 \times 10^{-3}}{60} = \sqrt{2gh} \times A$   
 $A = \frac{1}{20} \times \frac{1}{\sqrt{2 \times 10 \times 10}} = 35 \text{ cm}^2$ 

Q.31 (2)

Volum of liquid displaced by stone is more when they are floating as comparison to that of when they put in liquid.

# **Q.32** (2)

Applying Bernoulli's theorem

$$\begin{array}{c}
 & \Psi & \Psi^{P_{2}} \\
 & \Psi & \Psi^{V_{2}} \\
 & \Psi^{V_{2}} \\
 & \Psi^{V_{1}} \\
 & \Psi^$$

Q.33

(4) AV = constant If A $\downarrow$  then speed  $\uparrow$  and pressure  $\downarrow$ 

**Q.34** (3)

 $\therefore$  Excess pressure  $\propto \frac{1}{\text{radius}}$ 

 $\therefore$  Pressure inside smaller bubble is greater than larger bubble.

$$V_{\rm T} = \frac{2r^2}{9\eta}(\rho - \sigma)g$$

(4)  

$$\theta = ms (T_2 - T_1)$$
  
 $-80 = 4 \times \frac{1}{2} (T_2 - (-10))$   
 $-80 = 2 (T_2 + 10)$   
 $-40 - 10 = T_2$   
 $T_2 = -50^{\circ}C$ 

## **Q.37** (3)

Q.36

The relation between two temperature scale is given as :

 $\frac{A-42}{110} = \frac{B-72}{220}$ 

For the two temperature scale to show same reading, A = B

$$\Rightarrow \frac{A-42}{110} = \frac{A-72}{220}$$
$$\Rightarrow 2(A-42) = A-72$$
$$\Rightarrow 2A-84 = A-72$$
$$\Rightarrow A = + 12^{\circ}$$

# **Q.38** (3)

Here, water absorbs heat from paper cup preventing it to reach at it's ignition point.

## **Q.39** (4)

According to Wein's law,  $\lambda_{max} T = constant$ , where T is the temperature in Kelvin.

$$\therefore \frac{(\lambda_{\max})_1}{(\lambda_{\max})_2} = \frac{T_2}{T_1} = \frac{2227 + 273}{1227 + 273}$$
$$\frac{(\lambda_{\max})_1}{(\lambda_{\max})_2} = \frac{2500}{1500} = \frac{5}{3}$$
or  $(\lambda_{\max})_2 = \frac{3}{5} \times (\lambda_{\max})_1 = \frac{3}{5} \times 5000 = 3000$  Å.

Q.40

(3)

$$M_{He} = 2M_{H_2}$$
$$T_{He} = 2T_{H_2} \implies \frac{T}{M} = \text{Same}$$
$$V_{rms} \propto \sqrt{\frac{T}{M}} \implies (V_{rms})_{He} = (V_{rms})_{H_2}$$

# Q.41 (2) Maxwell's law of distribution $v \propto \sqrt{T}$ $v \uparrow soT \uparrow$

234

Q.42

5

(1) For an adiabatic process,  $PV^{\gamma} = constant$ or

$$\frac{\mathbf{P}_1}{\mathbf{P}_2} = \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{\gamma} \quad \text{or} \quad \mathbf{P}_2 = 2^{\gamma} \mathbf{P}_1$$

Now, for a monoatomic gas, the value of  $\gamma$  is the highest Thus, for the same change in volume, the monoatomic gas will have the maximum pressure.

# **Q.43** (1)

For adiabatic expansion  $\Delta Q = \Delta U + W$  $0 = \Delta U + W$  $\Delta U = -W$  $\Delta U = -ve$ (::W = +ve)For Isobaric expansion,  $T \propto V$  $\Rightarrow$  V1:T1  $\Rightarrow$  increase in internal energy For Isothermal expansion T = constant $\Rightarrow$  U = constant For Isochoric Process V = constantW = 0 $\rightarrow$ 

# **Q.44** (2)

From the graph we can see that for compression of gas, area under the curve for adiabatic is more than isothermal process.

Therefore, compressing the gas through adiabatic process will require more work to be done.



Q.45

(3)

As seen from graph,  $\Delta \ell_{\rm A} = \Delta \ell_{\rm B}$ 

$$\Rightarrow \frac{F_A L_A}{\pi r_A^2 Y_A} = \frac{F_B L_B}{\pi r_B^2 Y_B}$$

$$\Rightarrow \frac{10 \times L}{\pi r_{A}^{2} \times Y} = \frac{40 \times L}{\pi r_{B}^{2} \times Y}$$
$$\Rightarrow \frac{r_{A}}{r_{B}} = \frac{1}{2}$$

**Q.46** (2)

$$B = \frac{\Delta P}{\left(-\frac{\Delta V}{V}\right)} \Rightarrow \frac{-\Delta V}{V} = \frac{P}{B}$$

$$V = \frac{4}{3}\pi r^{3} \Rightarrow \frac{\Delta V}{V} = \frac{3\Delta r}{r} \qquad ...(1)$$

$$A = 4\pi r^{2} \Rightarrow \frac{\Delta A}{A} = \frac{2\Delta r}{r} \qquad ...(2)$$
From eq (1) and (2)  $\frac{\Delta A}{A} = \frac{2}{3}\frac{\Delta V}{V}$ 

$$\therefore \frac{\Delta A}{A} = \frac{2}{3}\frac{P}{B}$$

**Q.47** (3) % Change in volume is max. because  $\gamma > \beta > \alpha$ .

**Q.48** (

(2)  $Q_4 + 10 + 5 - 8 = 0$   $Q_4 = 7 \text{ m}^3/\text{s}$   $\therefore 0.5 \text{ v} = 7$  $v = \frac{7}{0.5} \frac{70}{5} = 14 \text{ m/s}$ 

Q.49 (2)

$$h = \frac{2s \cos\theta}{r\rho g}$$

$$\therefore h \propto \frac{1}{r} \propto \frac{1}{\sqrt{A}}$$

**Q.50** (2)

$$W = T \times 2\Delta A \qquad \Rightarrow \quad T = \frac{W}{2\Delta A}$$
$$= \frac{2 \times 10^{-4}}{2[10 \times 6 - 8 \times 3.75] \times 10^{-4}}$$
$$= 3.3 \times 10^{-2} \text{ N/m}$$

6  
CHEMISTRY  
SECTION-A  
Q.51 (2)  

$$\frac{4}{CH_3} - \frac{3}{CH} = \frac{2}{CH} - \frac{1}{CN}$$
  
sp<sup>3</sup> sp<sup>2</sup> sp<sup>2</sup> sp  
Q.52 (1)  
COOH  
(oxalic acid)  
Q.53 (2)  
COOH  
COOH  
COOH  
Ethane dioic acid.  
Q.53 (2)  
COH  
CH = C<sup>⊕</sup> > CH<sub>3</sub> - C = C<sup>⊕</sup> > CH<sub>2</sub> = CH<sup>⊕</sup> > CH<sub>3</sub>CH<sub>2</sub><sup>⊕</sup>  
Q.55 (2)  
Q.55 (2)  
Q.55 (2)  
Q.56 (4)  
-CH<sub>3</sub> (+1 group) other belongs to -1 group.  
Q.57 (2)  
(C<sub>2</sub>H<sub>3</sub>),NH > (C<sub>2</sub>H<sub>3</sub>),N > C<sub>2</sub>H<sub>3</sub> - NH<sub>2</sub>  
(2)  
Q.58 (4)  
-CH<sub>3</sub> is + 1 group.  
Q.59 (1)  
H<sub>3</sub>O<sup>⊕</sup> is not an electrophile because it has complete octet.  
Q.61 (4)  
Resonance energy ∝ extent of resonance.  
Q.62 (2)  
Metamerism shows by that functional groups which is Bivalent or trivalent in nature.

**Q.63** (4)



Both are metamers of each other.

**Q.64** (3)

H OH H OH CH<sub>3</sub>

It contains plane of symmetry so it is achiral.

Q.65

 $C_5H_{12}$  has 3 chain isomers.



(4)

iso-Pentane Neo-Pentane

**Q.66** (4)



Both are Homologus of each other.

**Q.67** (3)

B and D contains same groups on Both double bonded carbon with different configuration.

Q.68 (4)

Reaction is called Wurtz fittig reaction.

**Q.69** (1)



**Q.70** (1)





Q.71



7

 Q.72 (4) Alkyne with acidic hydrogen gave tollens test.
 Q.73 (4)

$$CH_{3}-C-Cl \xrightarrow{H_{2}/Pd}_{BaSO_{4}} CH_{3}CHO \xrightarrow{Zn-Hg/HCl}_{(A)} CH_{3}-CH_{3} (B)$$

$$\downarrow Cl_{2}/hv$$

$$CH_{3}CH_{2}Cl$$

$$(C)$$

Q.74 (2)

In case of electron withdrawing groups, electrophile  $NO_2^+$  always attacks at meta position.

Q.75 (2) Reactivity for NAR  $\propto$  Electrophilic character on carbon of -C -

(a) 
$$Cl_2 / hv \rightarrow Cl$$
  
(b)  $CH_3 - C - CH_3 - Cl_2 / hv \rightarrow CH_3 - CH_2 - CH_3$   
(c)  $CH_3 - C - CH_3 - Cl_2 / hv \rightarrow CH_3 - C - CH_3$   
(c)  $CH_3 - C - CH_3 - CH_3 - CH_3 - CH_3$ 

**Q.77** (3)

Wurtz reaction is best method to prepare symmetrical alkane.

# **Q.78** (3)

 $C_2H_6$  (Excess) +  $Cl_2 \xrightarrow{U.V.} C_2H_5$ -Cl + HCl In this reaction, if we use  $Cl_2$  in excess then dichloro and trichloro forms as product and if ethane is used in excess ethyl chloride forms as major product.

**Q.79** (1)



**Q.80** (3)

$$CH_{3} - C = CH_{2} \xrightarrow{HBr} CH_{3} - CH_{2} - CH_{2}Br$$

$$\downarrow CH_{3} CH_{3} CH_{3} - CH_{2}Br$$

AITS/NEET/Final Track(XI)/PT-004

$$CH_{3}-C \equiv C-H \xrightarrow{NaNH_{2}} CH_{3}-C \equiv \stackrel{\odot}{C} \stackrel{\oplus}{Na} a$$
$$\xrightarrow{CH_{3}-CH_{2}-1} CH_{3}-C \equiv C-CH_{2}-CH_{3}$$

**Q.82** (1)

$$CH_{3}-CH_{2}CH_{2}CH_{3} \xrightarrow{AlCl_{3}+HCl} CH_{3}-CH_{3}-CH_{3}$$
  
Isomerization reaction CH<sub>3</sub>

**Q.83** (3)

% of Br = 
$$\frac{80}{(108+80)} \times \frac{0.11}{0.18} \times 100 = 26\%$$

- Q.84 (3) Under reduced pressure, the liquid will distilled at a temperature below its boiling point and thus will not get decomposed.
  - (4)Lassaigne's test do not shown by diazonium salt as they decompose on heating

## **SECTION-B**

**Q.86** (1)

Q.85

$${\stackrel{5}{C}}H_{3} - {\stackrel{4}{C}}H_{2} - {\stackrel{3}{C}}-{\stackrel{2}{C}}H_{2} - {\stackrel{1}{C}}-H$$
 3-oxopentanal

**Q.87** (2)

ŀ

$$I = C = O = C = H$$
 Methanoic anhydride

Q.88 (1)  

$$CH_2 = CH - CH_2 - C \equiv N$$

$$\sigma - bond \qquad \pi - bond$$
9 3  
Ratio 3 : 1

**Q.89** (1)



Q.90 (4) NCERT (XI) Pg # 342 3rd para

**Q.91** (3)  

$$\begin{array}{c}
2^{2} CH_{2} - CH - CH_{3} \\
2 & 2^{2} CH_{3} \\
2^{2} & 2^{2} CH_{3}
\end{array}$$
7. 2''H are recent in f

7, 2'H are present in the compound.

$$\begin{array}{ccc} \textbf{Q.92} & \textbf{(3)} \\ & \stackrel{\Theta}{C}H_3 & sp^3 \\ & \stackrel{\bullet}{C}H_3 & sp^2 \\ & \stackrel{\oplus}{C}H_3 & sp^2 \end{array}$$

**Q.93** (4)

8

Anti conformer is most stable due to torsional strain.

**Q.94** (2)



Both are functional isomer of each other.

Q.95 (2)

$$CH_{3}-CH = CH_{2} \xrightarrow{H-Cl} CH_{3}-CH - CH_{3} \xrightarrow{Cl} CH_{3}-CH - CH_{3} \xrightarrow{Cl} CH_{3}-CH - CH_{3}$$

**Q.96** (3)





Q.97

(2)

Acidic strength of hydrogen

$$CH = CH > \bigcirc > CH_2 = CH_2 > CH_3 - CH_3$$

(2)  
(a) 
$$R - COOH \xrightarrow{NaOH + CaO/\Delta} R - H$$
  
(b)  $-C - \xrightarrow{Zn - Hg/HCl} - CH_2 - C$ 

0

Q.99

Q.98

(2) 725-25 = 700 mmTemp. = 300 k, mass of the sub. 0.25 g Vol. of moist nitrogen = 40 ml

Volume of N<sub>2</sub> at STP V<sub>2</sub> =  $\frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2} = \frac{700 \times 40 \times 273}{300 \times 760}$ = 33.52 mL. We of N =  $\frac{28 \times 33.52}{28 \times 33.52} = \frac{938.56}{28 \times 32.52} = 0.0419 \text{ g}$ 

% of 
$$N_2$$
 = 22400 - 22400 = 0.0419 g  
% of  $N_2$  in org. compound.

$$=\frac{0.0419}{0.25}\times100=16.76\%$$

**Q.100** (3)

Ammonium phosphopolybdate  $[(NH_4)_3Po_4.12MoO_3]$  yellow ppt. is obtained. In the detection of P.

#### BIOLOGY-I SECTION-A

Q.101 (2) By using water which contains stable isotope of oxygen, it was proved that oxygen comes from water during photosynthesis.

# Q.102 (2)

Relationship between incident light and  $CO_2$  fixation rate is linear at low intensity of light.

## Q.103 (2)

4-carbon OAA is formed in mesophyll cell catalysed by an enzyme called PEPcase.

# Q.104 (2)

**Hint:**  $CO_2$  is the major limiting factor, influencing the rate of photosynthesis.

**Sol.** :  $C_3$  plants show saturation at 450 ppm of CO<sub>2</sub>, while C<sub>4</sub> plants show saturation at 360 ppm of CO<sub>2</sub> concentration at high light intensities. C<sub>3</sub> plants show CO<sub>2</sub> fertilization effect as in the CO<sub>2</sub> enriched atmosphere they show higher yield.

Q.105 (3)Q.106 (2)Q.107 (1)(3) Q.108 Q.109 (3)Q.110 (3)Q.111 (4)Q.112 (2)**Q.113** (2)Q.114 (4) In the Krebs' cycle oxaloacetic acid and acetyl CoA form citric acid in presence of water in first step. Q.115 (4)Q.116 (4) Q.117 (4) Cytochrome bc1 complex is complex III. Q.118 (1)Q.119 (4)Oxidative decarboxylation of pyruvate occurs in mitochondria. Pyruvate enters into mitochondrial matrix where its oxidative decarboxylation occurs with the help of pyruvate dehydrogenase. Q.120 (3)0.121 (3)Q.122 (2)Q.123 (4) The statement I is correct. Statements II and III are incorred and can be corrected as Electron transport chain can occur only in the presence of oxygen. Complete oxidation of glucose into  $CO_2$  and  $H_2O$ requires the presence of oxygen. **Q.124** (2)Q.125 (4)

| Q.126                                              | (1)<br>IAA is a natural auxin. Apical hook formation occurs<br>by ethlene.                                                                                                                                                                       | Q.144<br>Q.145                                                                                  | <ul><li>(3)</li><li>(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Q.127                                              | (2)                                                                                                                                                                                                                                              |                                                                                                 | R.Q. of carbohydrates – 1<br>R.Q. of fats and fatty acids – Less than 1<br>R.Q. of protein – 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Q.128                                              | (2)<br>IAA is a naturally occuring auxin.                                                                                                                                                                                                        | Q.146                                                                                           | <ul><li>(4)</li><li>Auxin delay the senescence in young leaves.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Q.129                                              | (3) It activates the $\alpha$ -amylase production in germinating seeds.                                                                                                                                                                          | Q.147                                                                                           | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Q.130                                              | <ul><li>(2)</li><li>Plants have the capacity for indeterminate growth.</li><li>Growth in plants is continuous throughout their life due to the presence of different types of meristems at</li></ul>                                             | Q.148<br>Q.149                                                                                  | <ul><li>(2)</li><li>(1)</li><li>The curve in the graph shows exponential growth of that plant organ.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Q.131                                              | <ul><li>(3)</li><li>Life span is not related with the growth in size or weight of the organisms.</li></ul>                                                                                                                                       |                                                                                                 | A sigmoid curve is a characteristic of living organism<br>growing in a natural environment. The geometric growth<br>is expressed as<br>$W_1 = W_0 e^{rt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Q.132                                              | (3)                                                                                                                                                                                                                                              | Q.150                                                                                           | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Q.133                                              | (1)                                                                                                                                                                                                                                              |                                                                                                 | BIOLOGY-II<br>SECTION-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Q.134                                              | (4)                                                                                                                                                                                                                                              | Q.151                                                                                           | (2)<br>Calvin cycle occurs in stroma region of chloroplast.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ~                                                  |                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Q.135                                              | (3)                                                                                                                                                                                                                                              | Q.152                                                                                           | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Q.135                                              | (3) SECTION-B                                                                                                                                                                                                                                    | Q.153                                                                                           | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Q.135<br>Q.136                                     |                                                                                                                                                                                                                                                  | -                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Q.136                                              | SECTION-B (1)                                                                                                                                                                                                                                    | Q.153<br>Q.154<br>Q.155<br>Q.156                                                                | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                    | SECTION-B                                                                                                                                                                                                                                        | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157                                                       | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Q.136                                              | SECTION-B (1)                                                                                                                                                                                                                                    | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159                                     | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Q.136<br>Q.137<br>Q.138                            | <b>SECTION-B</b> (1) (2) (4)                                                                                                                                                                                                                     | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159<br>Q.160                            | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Q.136<br>Q.137                                     | <b>SECTION-B</b> (1) (2)                                                                                                                                                                                                                         | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159                                     | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Q.136<br>Q.137<br>Q.138                            | SECTION-B (1) (2) (4) (3) (1) (1) Calvin cycle starts with the carboxylation of RuBP. The sequence of the three stages of Calvin cycle is                                                                                                        | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159<br>Q.160<br>Q.161<br>Q.162          | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(4)</li> <li>(3)</li> <li>Reaction centre has a single chl. a molecule.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Q.136<br>Q.137<br>Q.138<br>Q.139                   | SECTION-B<br>(1)<br>(2)<br>(4)<br>(3)<br>(1)<br>Calvin cycle starts with the carboxylation of RuBP.                                                                                                                                              | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159<br>Q.160<br>Q.161                   | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(4)</li> <li>(3)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Q.136<br>Q.137<br>Q.138<br>Q.139<br>Q.140          | SECTION-B         (1)         (2)         (4)         (3)         (1)         Calvin cycle starts with the carboxylation of RuBP.<br>The sequence of the three stages of Calvin cycle is<br>Carboxylation → Reduction → Regeneration             | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159<br>Q.160<br>Q.161<br>Q.162          | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(4)</li> <li>(3)</li> <li>Reaction centre has a single chl. a molecule.</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(8)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(3)</li> <li>(4)</li> <li>(3)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> <li>(7)</li></ul>           |  |  |
| Q.136<br>Q.137<br>Q.138<br>Q.139<br>Q.140<br>Q.141 | SECTION-B         (1)         (2)         (4)         (3)         (1)         Calvin cycle starts with the carboxylation of RuBP.<br>The sequence of the three stages of Calvin cycle is<br>Carboxylation → Reduction → Regeneration         (4) | Q.153<br>Q.154<br>Q.155<br>Q.156<br>Q.157<br>Q.158<br>Q.159<br>Q.160<br>Q.161<br>Q.162<br>Q.163 | <ul> <li>(3)</li> <li>(3)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(1)</li> <li>(2)</li> <li>(4)</li> <li>(3)<br/>Reaction centre has a single chl. a molecule.</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(4)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> <li>(7)</li> <li>(7)</li> <li>(8)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(9)</li> <li>(10)</li> <li>(10)&lt;</li></ul> |  |  |

10



## Q.167 (4)

**Q.168** (1)  $C_{51}H_{98}O_6$  is tripalmitin

## Q.169 (3)

Statements I, II and FV are correct only statement III is incorrectand can be corrected as Glycolysis Utilises 1 ATF molecule each at 2 steps, i.e. in the conversion of glucose to glucose-6-phosphate and in the conversion of fTructosc-6-phosphate to

**Q.170** (3)

- Q.171 (3) Energy of ATP is also utilised during glycolysis. During glycolysis NAD<sup>+</sup> is converted into NADH<sup>+</sup> H<sup>+</sup>.
- Q.172 (2)
- Q.173 (1)
- Q.174 (3) Cyt c is a mobile electron carrier.
- Q.175 (3)Heterophylly is the phenomenon of appearance of different forms of leaves on the same plant.
- Sol.: Difference in shapes of leaves is observed in buttercup present in air and water i.e., different shapes of leaves according to its habitat.
- Q.176 (4) Q.177 (4)
- Dense cytoplasm is the feature of meristematic cells. **Q.178** (1)
- **Q.179** (2)
- **Q.180** (1)
- Q.181 (2)

Ethylene increases number of fruits in plants like cucumber.

- 11
  - **Q.182** (2)
  - Q.183 (4)
  - Q.184 (2)

GA cause bolting in rosette plants.

**Q.185** (4)

Cytokinin is derived from purines.

## **SECTION-B**

- **Q.186** (4)
- Q.187 (2)

Q.188 (4)

**Hint:** In  $C_3$  plants,  $CO_2$  acceptor is a 5-carbon containing molecule.

**Sol. :** In  $C_3$  plants, RuBP is the primary  $CO_2$  acceptor molecule.

- **Q.189** (2)
- **Q.190** (1)

**Q.191** (2)

Peter Mitchell (1961) proposed the chemiosmotic mechanism of ATP synthesis which, states that ATP synthesis occurs due to  $H^+$  flow through a membrane. It includes development of proton gradient and proton flow.

# **Q.192** (2)

Substrate level phosphorylation occur only at specific places in glycolysis and TCA cycle and produce 2ATP in both cases and hence total 4 ATP by substrate level phosphorylation.

- **Q.193** (1)
- **Q.194** (2)
- **Q.195** (4)
- Q.196 (4)
- **Q.197** (2)

Both Assertion and Reason are true, but Reason is not the correct explanation of Assertion..

Gibberellin is a plant hormone which is useful in early seed production in conifers because gibberellin increases  $\alpha$ -amylase production in seed which helps in breakdown of seed dormancy and causes seed germination,

Ethephon is commercial name of ethylene hormone which is used to promote early ripening of fruits like tomato and apple.

- **Q.198** (2)
- **Q.199** (1)
- **Q.200** (4)