AITS FULLTEST-01

ANSWER KEY

PHYSICS

Q. 1 (2)	Q. 2 (1)	Q. 3 (3)	Q. 4 (1)	Q.5 (4)	Q. 6 (2)	Q. 7 (3)	Q.8 (3)	Q. 9 (3)	Q. 10 (1)
Q. 11 (2)	Q. 12 (1)	Q. 13 (2)	Q. 14 (3)	Q. 15 (4)	Q. 16 (3)	Q. 17 (1)	Q. 18 (1)	Q. 19 (4)	Q. 20 (3)
Q. 21 (1)	Q. 22 (4)	Q. 23 (2)	Q. 24 (3)	Q. 25 (4)	Q. 26 (1)	Q. 27 (3)	Q. 28 (4)	Q. 29 (1)	Q. 30 (2)
Q. 31 (4)	Q. 32 (2)	Q. 33 (4)	Q. 34 (1)	Q. 35 (3)	Q. 36 (2)	Q. 37 (3)	Q. 38 (2)	Q. 39 (2)	Q. 40 (1)
Q. 41 (2)	Q. 42 (1)	Q. 43 (4)	Q. 44 (1)	Q. 45 (3)	Q. 46 (3)	Q. 47 (2)	Q. 48 (2)	Q. 49 (1)	Q. 50 (2)
CHEMISTRY									
Q. 51 (3)	Q. 52 (3)	Q. 53 (2)	Q. 54 (1)	Q. 55 (1)	Q. 56 (4)	Q. 57 (3)	Q. 58 (3)	Q. 59 (3)	Q. 60 (3)
Q. 61 (3)	Q. 62 (3)	Q. 63 (2)	Q. 64 (2)	Q. 65 (2)	Q. 66 (2)	Q. 67 (4)	Q. 68 (1)	Q. 69 (1)	Q. 70 (3)
Q. 71 (3)	Q. 72 (3)	Q. 73 (2)	Q. 74 (1)	Q. 75 (4)	Q. 76 (4)	Q. 77 (3)	Q. 78 (4)	Q. 79 (1)	Q. 80 (3)
Q. 81 (4)	Q. 82 (3)	Q. 83 (4)	Q. 84 (4)	Q. 85 (1)	Q. 86 (4)	Q. 87 (2)	Q. 88 (3)	Q. 89 (4)	Q. 90 (1)
Q. 91 (2)	Q. 92 (4)	Q. 93 (2)	Q. 94 (1)	Q. 95 (2)	Q. 96 (1)	Q. 97 (2)	Q. 98 (2)	Q. 99 (1)	Q. 100 (3)
BIOLOGY									
Q. 101 (3)	Q. 102 (4)	Q. 103 (1)	Q. 104 (1)	Q. 105 (1)	Q. 106 (4)	Q. 107 (3)	Q. 108 (2)	Q. 109 (4)	Q. 110 (3)
Q. 111 (1)	Q. 112 (2)	Q. 113 (4)	Q. 114 (4)	Q. 115 (1)	Q. 116 (4)	Q. 117 (3)	Q. 118 (1)	Q. 119 (3)	Q. 120 (1)
Q. 121 (2)	Q. 122 (4)	Q. 123 (4)	Q. 124 (3)	Q. 125 (3)	Q. 126 (3)	Q. 127 (3)	Q. 128 (2)	Q. 129 (2)	Q. 130 (2)
Q. 131 (3)	Q. 132 (2)	Q. 133 (2)	Q. 134 (2)	Q. 135 (4)	Q. 136 (2)	Q. 137 (1)	Q. 138 (4)	Q. 139 (1)	Q. 140 (2)
Q. 141 (4)	Q. 142 (2)	Q. 143 (3)	Q. 144 (2)	Q. 145 (1)	Q. 146 (1)	Q. 147 (2)	Q. 148 (1)	Q. 149 (1)	Q. 150 (1)
Q. 151 (3)	Q. 152 (3)	Q. 153 (4)	Q. 154 (1)	Q. 155 (4)	Q. 156 (4)	Q. 157 (1)	Q. 158 (3)	Q. 159 (3)	Q. 160 (4)
Q. 161 (4)	Q. 162 (4)	Q. 163 (1)	Q. 164 (4)	Q. 165 (1)	Q. 166 (3)	Q. 167 (2)	Q. 168 (2)	Q. 169 (3)	Q. 170 (2)
Q. 171 (3)	Q. 172 (3)	Q. 173 (1)	Q. 174 (2)	Q. 175 (2)	Q. 176 (2)	Q. 177 (4)	Q. 178 (4)	Q. 179 (3)	Q. 180 (3)
Q. 181 (3)	Q. 182 (2)	Q. 183 (2)	Q. 184 (1)	Q. 185 (2)	Q. 186 (2)	Q. 187 (1)	Q. 188 (3)	Q. 189 (2)	Q. 190 (4)
Q. 191 (4)	Q. 192 (2)	Q. 193 (4)	Q. 194 (1)	Q. 195 (4)	Q. 196 (3)	Q. 197 (3)	Q. 198 (2)	Q. 199 (4)	Q. 200 (2)

PHYSICS

Section-A

Q. 1 (2)

$$
\begin{array}{ll}
\text { Torque }=\mathrm{F} \times \mathrm{r} \perp & \mathrm{Nm} \\
\text { Stress }=\frac{\text { Force }}{\text { Area }} & \mathrm{N} / \mathrm{m}^{2} \\
\text { Latent Heat }=\frac{\text { Energy }}{\text { Mass }} & \mathrm{Jkg}^{-1}
\end{array}
$$

$$
\text { Power }=\frac{\text { Work }}{\text { Time }} \quad \mathrm{Nms}^{-1}
$$

Q. 2 (1)

Distance travelled $=$ Area under the u-t graph

$$
\therefore \Delta \mathrm{S}=\frac{1}{2} \times 5 \times 8=20
$$

Q. 3 (3)

$$
\overrightarrow{\mathrm{V}}_{\mathrm{rm}}=\overrightarrow{\mathrm{V}}_{\mathrm{r}}-\overrightarrow{\mathrm{V}}_{\mathrm{m}} \Rightarrow \overrightarrow{\mathrm{~V}}_{\mathrm{r}}=\overrightarrow{\mathrm{V}}_{\mathrm{rm}}+\overrightarrow{\mathrm{V}}_{\mathrm{m}}
$$

according to triangle law rain is coming from the back
Q. $4 \quad$ (1)

Here, $\mathrm{W}=\mu \mathrm{N}$
$=0.4 \times 20$
$=8 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{x}=3 \mathrm{t}^{2}+5 \\
& \Rightarrow \mathrm{v}=6 \mathrm{t} \Rightarrow \Delta \mathrm{~W}=\Delta \mathrm{k} \\
& =\frac{1}{2}(2)(30)^{2}-\frac{1}{2} 2(0)^{2}=900 \mathrm{~J}
\end{aligned}
$$

Q. 6 (2)

Hint : Rotational equilibruim.
Sol. :

$3 g\left(\frac{\ell}{3}\right)=\operatorname{mg}\left(\frac{2 \ell}{3}\right)$
$3=2 \mathrm{~m}$
$\Rightarrow \mathrm{m}=\frac{3}{2}=1.5 \mathrm{~kg}$
Q. 7 (3)

Areal velocity of planet
$\frac{\mathrm{dA}}{\mathrm{dt}}=\frac{\mathrm{L}}{2 \mathrm{~m}}$
for $L=$ constant,
$\frac{\mathrm{dA}}{\mathrm{dt}}=$ constant
Q. 8
Q. 9 (3)

Here, Length, $\mathrm{L}=10 \mathrm{~m}$
Mass, $\mathrm{M}=5 \mathrm{~g}=5 \times 10^{-3} \mathrm{~kg}$
Tension, $\mathrm{T}=80 \mathrm{~N}$
Mass per unit length of the wire is
$\mu=\frac{\mathrm{M}}{\mathrm{L}}=\frac{5 \times 10^{-3} \mathrm{~kg}}{10 \mathrm{~m}}=5 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}$
Speed of the transverse wave on the wire is
$\mathrm{v}=\sqrt{\frac{\mathrm{T}}{\mu}}=\sqrt{\frac{80 \mathrm{~N}}{5 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}}}$
$=4 \times 10^{2} \mathrm{~ms}^{-1}=400 \mathrm{~ms}^{-1}$
Q. 10 (1)
$\mathrm{f}_{0}=220=\frac{\mathrm{v}}{4 \mathrm{~L}}$
Also, $\mathrm{f}=(2 \mathrm{n}-1) \frac{\mathrm{v}}{4 \ell}$
\therefore first overtone $(\mathrm{n}=2)$ for $\frac{3 \ell}{4}$
$\mathrm{f}=(2 \times 2-1) \times \frac{\mathrm{v}}{4 \times \frac{3 \ell}{4}}$
$=\frac{\mathrm{v}}{\ell}=4 \times 220$

$$
=880 \mathrm{~Hz}
$$

Q. 11 (2)
$\mathrm{v}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}} \Rightarrow \frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\left(\frac{\mathrm{v}}{\mathrm{v} / 2}\right)^{2}=\frac{600}{\mathrm{~T}}$
$\mathrm{T}=\frac{600}{4}=150 \mathrm{~K}=-123^{\circ} \mathrm{C}$
Q. 12 (1)
$\mathrm{y}=\frac{1}{2} \times \frac{Y \mathrm{~A}}{\ell} \mathrm{x}^{2}$
$y \propto x^{2}$
Q. 13 (2)

Hydraulic lift is based on Pascal's law.
Q. 14 (3)

As ball is dropped from large height, it must have attained velocity greater than terminal velocity before striking the liquid.
Q. 15 (4)
$\tau_{\text {max }}=\mathrm{pE}$
$=\mathrm{q} \times \mathrm{d} \times \mathrm{E}$
$=10^{-6} \times 2 \times 10^{-2} \times 2 \times 10^{5}$
$=4 \times 10^{-3} \mathrm{Nm}$.
Q. 16 (3)

Work done $=$ Potential difference \times charge $=\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}\right) \times \mathrm{q}$, V_{A} and V_{B} only depend on the initial and final positions and not on the path. Electrostatic force is a conservative force.

If the loop is completed, $\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{A}}=0$.
No net work is done as the initial and final potentials are the same.
Both the statements are true but statement-2 is not the reason for statement-1.
Q. 17 (1)

Given circuit can be drawn as

Equivalent capacitance $=4 \times 8=32 \mu \mathrm{~F}$.
Q. 18 (1)

For parallel combination
$\mathrm{I} \propto \frac{1}{\mathrm{R}}$
$\therefore \mathrm{I}_{2}=\left(\frac{4}{4+2}\right) . \mathrm{I}_{12}$

$$
I_{2}=\frac{2}{3} I_{12}
$$

Now, $\frac{\mathrm{P}_{2}}{\mathrm{P}_{12}}=\frac{\mathrm{I}_{2}^{2} \times 2}{\mathrm{I}_{12}^{2} \times 12}$
$=\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{12}}\right)^{2} \times \frac{1}{6}$
$=\left(\frac{2}{3}\right)^{2} \times \frac{1}{6}$

$$
=\frac{2}{27}
$$

Q. 19 (4)

Here, $\frac{2}{6}=\frac{4}{12}$
$\therefore \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}$ (by principle of balanced wheatstone bridge)
Q. 20 (3)

Temperature coefficient of resistance (α) of conductor is positive and that of semiconductor is negative so by $\rho_{\mathrm{t}}=\rho_{0}(1+\alpha \mathrm{t})$
$\rho_{\text {conductor }} \uparrow, \rho_{\text {semiconductor }} \downarrow$ if $\mathrm{t} \uparrow$
Q. 21 (1)
$\frac{40}{60}=\frac{\mathrm{R}}{\mathrm{S}}$,
$\frac{2}{3}=\frac{\mathrm{R}}{\mathrm{S}}$
$\frac{64}{36}=\frac{\mathrm{R}(12+\mathrm{S})}{12 \mathrm{~S}}$
$\frac{16}{9}=\frac{R(12+S)}{12 S}$
(1)/(2)
$\mathrm{S}=20 \Omega, \mathrm{R}=\frac{40}{3} \Omega$
Q. 22 (4)

Factual.
Q. 23 (2)
$B=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{R}} \times \theta$
Here, $\theta=2 \pi-\frac{2 \pi}{3}=\frac{4 \pi}{3}$
Q. 24 (3)
$\mathrm{B}_{1}-\mathrm{B}_{2}=40 \mu \mathrm{~T}$
$\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \mathrm{i}_{1}}{\mathrm{~d}}-\frac{\mu_{0}}{4 \pi} \times \frac{2 \mathrm{i}_{2}}{\mathrm{~d}}=40 \mu \mathrm{~T}$
$\frac{\mu_{0}}{4 \pi} \frac{2}{\mathrm{~d}}\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=40 \mu \mathrm{~T}$
Also, $\frac{\mu_{0}}{4 \pi} \cdot \frac{2}{\mathrm{~d}}\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right)=60 \mu \mathrm{~T}$
$\Rightarrow \frac{\mathrm{i}_{1}-\mathrm{i}_{2}}{\mathrm{i}_{1}+\mathrm{i}_{2}}=\frac{40}{60}=\frac{2}{3}$
$\frac{\mathrm{i}_{1}}{\mathrm{i}_{2}}=\frac{3+2}{3-2}=\frac{5}{1}$
Q. 25 (4)
(a) $\mathrm{V}_{\mathrm{S}}=\frac{I_{S}}{R_{G}}$

If $I_{S} \& R_{G}$ both are increased in same ratio then V_{S} remains unchanged.
(b) To convert a moving coil galvanometer into voltmeter a high resistance is connected in series.
Q. 26 (1)

$$
\mathrm{N} \phi=\mathrm{Li}
$$

$$
\phi=\frac{\mathrm{Li}}{\mathrm{~N}}=\frac{8 \times 10^{-3} \times 5 \times 10^{-3}}{400}=10^{-7} \mathrm{~Wb}=\frac{\mu_{0}}{4 \pi} \mathrm{~Wb}
$$

Q. 27 (3)
$\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}=0.8$
Q. 28 (4)

$$
\begin{aligned}
& \left(\mathrm{I}_{0}\right)_{\mathrm{R}}=2 \mathrm{I}_{0} \cos \frac{\theta}{2} \\
& =2 \times 4 \times \cos \frac{\pi}{3}\left[\theta=\frac{2 \pi}{3}\right] \\
& =4
\end{aligned}
$$

Q. 29 (1)

$$
\begin{aligned}
& \frac{f_{\text {water }}}{f_{\text {air }}}=\frac{\left({ }_{\mathrm{a}} \mu_{\mathrm{L}}-1\right)}{\left({ }_{\mathrm{w}} \mu_{\mathrm{L}}-1\right)} \\
& =\frac{(1.5-1)}{\left(\frac{1.5}{4 / 3}-1\right)} \\
& =4 \\
& \mathrm{f}_{\text {water }}=4 \times 15 \\
& =60 \mathrm{~cm}
\end{aligned}
$$

Q. 30 (2)

Speed of light in medium (1)

$$
\mathrm{v}_{1}=\frac{\mathrm{a}}{\mathrm{t}_{1}}
$$

Speed of light in medium (2)

$$
\mathrm{v}_{2}=\frac{\mathrm{b}}{\mathrm{t}_{2}}
$$

Now, $\sin C=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\frac{\mathrm{bt}}{\mathrm{t}_{1}}$
Q. 31 (4)
$\beta_{1}=\beta_{2}$
$\lambda_{1} \frac{\mathrm{D}_{1}}{\mathrm{~d}_{1}}=\lambda_{2} \frac{\mathrm{D}_{2}}{\mathrm{~d}_{2}}$

$$
\Rightarrow \frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}=\frac{\lambda_{1} \mathrm{D}_{1}}{\lambda_{2} \mathrm{D}_{2}}=\frac{3}{5}
$$

Q. 32 (2)

R is not correct explanation of A because R is not considering when energy of incident radiation is less than work function of metal, then also kinetic energy of photoelectrons is zero.
Q. 33 (4)

No. of $\alpha=\frac{200-168}{4}=8$
No. of $\beta=\frac{80-(90-16)}{1}=6$
Q. 34 (1)
$\mathrm{n}_{\mathrm{i}}^{2}=\mathrm{n}_{\mathrm{h}} \mathrm{n}_{\mathrm{e}} \Rightarrow\left(10^{19}\right)^{2}=10^{21} \times \mathrm{n}_{\mathrm{e}} \Rightarrow \mathrm{n}_{\mathrm{e}}=10^{17} / \mathrm{m}^{3}$.
Q. 35 (3)
$\mathrm{f}=\frac{\mathrm{c}}{\lambda} ; \lambda=\frac{\mathrm{c}}{\mathrm{f}}=\frac{3 \times 10^{8}}{40 \times 10^{6}}=7.5 \mathrm{~m}$
Q. $36 \quad$ (2)

If student measure 3.50 cm it means that there in an uncertainty of order 0.01 cm
L.C of V.C $=1 \mathrm{MSD}-1 \mathrm{VSD}$
$=\frac{1}{10}\left[1-\frac{9}{10}\right]=\frac{1}{100} \mathrm{~cm}$
So (2) is Correct option
Q. 37 (3)
distance covered by first ball in 15 s is -
$\mathrm{S}_{1}=\frac{1}{2} \times 10 \times(15)^{2}$
$=1125 \mathrm{~m}$
distance covered by second ball in 5 sec
$\mathrm{S}_{2}=\mathrm{v} \times 5+\frac{1}{2} \times 10 \times 5^{2}$
Also, $\mathrm{S}_{1}=\mathrm{S}_{2}$
$1125=5 \mathrm{v}+125$
$\mathrm{v}=200 \mathrm{~m} / \mathrm{s}$.
Q. 38 (2)
$\mathrm{I} \omega=$ constant
$\frac{\mathrm{MR}^{2}}{2} \omega=$ constant
$\omega \propto \frac{1}{\mathrm{R}^{2}}$
Q. 39 (2)
$\mathrm{u}=\sqrt{2} \mathrm{u} \cos \theta$
$\cos \theta=\frac{1}{\sqrt{2}}$
$\theta=45^{\circ}$
Q. 40 (1)
$\mathrm{W}=3 \times\left[-\frac{\mathrm{Gm}^{2}}{\mathrm{~d}}\right]$
$=-\frac{3 \times 6.67 \times 10^{-11} \times(0.1)^{2}}{0.2}$
$=-1.0 \times 10^{-11} \mathrm{~J}$
Q. 41 (2)

Work done $=$ Surface tension \times (Surface area)
Total surface area of soap bubble $=40 \times 2=80 \mathrm{~cm}^{2}$
(Two surface)
Work done $=0.03 \times 80 \times 10^{-4} \mathrm{~J}$

$$
=2.4 \times 10^{-4} \mathrm{~J}
$$

Q. 42 (1)
$\mathrm{W}=\mathrm{QV}$
$\therefore \quad \mathrm{V}=\frac{\mathrm{W}}{\mathrm{Q}}=\frac{2}{20}=0.1$ volt
Q. 43 (4)

As voltmeter has very high resistance, therefore resistance of circuit will increase resulting into very small flow of current.
Q. 44 (1)
$J=\frac{I}{A}$ Here current is same through cross-section A and B
area at A $<$ area at B
$\mathrm{J}_{\mathrm{A}}>\mathrm{J}_{\mathrm{B}}$
We know that $\mathrm{J}=\sigma \mathrm{E}$
$\mathrm{E}_{\mathrm{A}}>\mathrm{E}_{\mathrm{B}}$
Q. 45 (3)
$\mathrm{r}=\frac{\mathrm{mv}}{\mathrm{qB}}$
$=\frac{v}{\left(\frac{q}{m}\right) B}$
$=\frac{1.76 \times 10^{3}}{1.76 \times 10^{11} \times 10^{-2}}$
$=10^{-6} \mathrm{~m}$

Q. 46 (3)

$\omega=\frac{1}{\sqrt{\mathrm{LC}}}$
$\Rightarrow \mathrm{L}=\frac{1}{\omega^{2} \mathrm{C}}=\frac{1}{(100)^{2} \times 100 \times 10^{-6}}=1 \mathrm{H}$
Q. 47 (2)

for I refracting surface
$\frac{1 \cdot 5}{\mathrm{v}}-\frac{1}{-60}=\frac{(1 \cdot 5-1)}{12}$
solving, we get
$\mathrm{v}=60 \mathrm{~cm}$
\therefore for II refracting surface
$\mathrm{v}=+(60-24)=+36 \mathrm{~cm}$
$\frac{1}{\mathrm{v}}-\frac{1.5}{36}=\frac{(1-1 \cdot 5)}{-12}$
Solving, we get
$\mathrm{v}=12 \mathrm{~cm}$
\therefore distance from the centre is $12+12=24 \mathrm{~cm}$
Q. 48 (2)
$\mathrm{E}=\frac{-13 \cdot 6 Z^{2}}{\mathrm{n}^{2}}$
for first excited state of a He^{+}ion.
$\mathrm{Z}=2, \mathrm{n}=2$
$\Rightarrow \mathrm{E}=\frac{-13 \cdot 6 \times 2^{2}}{2^{2}}$
$=-13 \cdot 6 \mathrm{eV}$
Q. 49 (1)

Q. 50 (2)
$I=\frac{P}{4 \pi r^{2}}$
$I=\frac{5}{4 \pi}$
$\approx 0.4 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$

CHEMISTRY
 SECTION-A

Q. 51 (3)
$22.4 \mathrm{~L} \mathrm{NH}_{3}$ gas $=1 \mathrm{~mol}$ gas $=17 \mathrm{~g} \mathrm{NH}_{3}$ gas
$1 \mathrm{LNH}_{3}$ gas $=\frac{1}{22.4}$ mole gas $=\frac{17}{22.4} \mathrm{~g}=0.76 \mathrm{~g}$
Q. 52 (3)
Q. 53 (2)
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.62 \times 10^{-34} \mathrm{~J} . \mathrm{S}}{6.62 \times 10^{-22} \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}}=1 \times 10^{-12} \mathrm{M}=0.01 \AA$
Q. 54 (1)
Q. 55 (1)

Sol. $\quad \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ngRT}$
For (1) Reaction $\Delta n_{g}=-2 \therefore$ for this reaction $\Delta H<\Delta U$
For (2) Reaction $\Delta \mathrm{n}_{\mathrm{g}}=1 \quad \therefore$ for this reaction $\Delta \mathrm{H}>\Delta \mathrm{U}$
For (3) Reaction $\Delta \mathrm{n}_{\mathrm{g}}=1 \quad \therefore$ for this reaction $\Delta \mathrm{H}>\Delta \mathrm{U}$
For (4) Reaction $\Delta \mathrm{n}_{\mathrm{g}}=2 \quad \therefore$ for this reaction $\Delta \mathrm{H}>\Delta \mathrm{U}$ so. Ans is (1)
Q. 56 (4)

For Reverse reaction. $\mathrm{K}_{\mathrm{C}}=\frac{1}{\mathrm{X}}$
\& Reverse reaction is divided by $2 \therefore \mathrm{~K}_{\mathrm{C}}=\frac{1}{\sqrt{\mathrm{x}}}$
\therefore Ans $\frac{1}{\sqrt{\mathrm{x}}}$
Q. 57 (3)
$\mathrm{M}=10^{-2}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$
$\therefore\left[\mathrm{OH}^{-}\right]=2 \times 10^{-2} \quad$ so $\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{2 \times 10^{-2}}=0.5 \times 10^{-12}$
$\mathrm{p}^{\mathrm{H}}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[0.5 \times 10^{-12}\right]=-[\log 0.5-12]$
$=-[-0.301-12]=12.3$
Q. 58 (3)
$\left[2 \mathrm{I}^{-} \quad \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}\right] \times 3$
$\left[\mathrm{MnO}_{4}^{-}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow 3 \mathrm{I}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}\right] \times 2$
$6 \mathrm{I}^{-}+2 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{I}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}$
$\therefore \mathrm{x}=6, \mathrm{y}=2, \mathrm{z}=8$
Ans. (3)
Q. 59 (3)

NH_{4}^{+}	$; \mathrm{NO}_{3}^{-}$
$\mathrm{x}+4=1$	$; \mathrm{x}-6=-1$
$\mathrm{x}=-3$	$; \mathrm{x}=5$

\therefore Ans. (3)
Q. 60 (3)

$\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow$	$2 \mathrm{Na}^{+}$	+	SO_{4}^{-2}
$(1-\alpha)$	2α		α
	1.5		0.75

$\mathrm{i}=\frac{1.5+0.75}{1}=2.25$
Q. 61 (3)

$$
\mathrm{Ca}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}
$$

so For $1 \mathrm{~mol}(40 \mathrm{~g}) \mathrm{Ca}$ Charge required $=2 \mathrm{~F}$
$\therefore 80 \mathrm{gm} \mathrm{Ca}$ Charge required $=2 \mathrm{~F}$
Q. 62 (3)

Lead storage battery is a secondary cell and (3) option reaction is of lead storage battery anode reaction.
Q. 63 (2)

Since A is taken in excess, so reaction become independent of A will depend on reactant B .

So : orden of reaction will be $\frac{1}{2}$.
Q. 64 (2) $\mathrm{Ph}-\mathrm{MgBr}+\mathrm{Ph}-\mathrm{OH} \rightarrow \mathrm{Ph}-\mathrm{H}$
Q. 65 (2)

Q. 66 (2)

Q. 67 (4)

(A)

(B)
(C)

Sulpharilic acid

C does not have $-\mathrm{NO}_{2}$ group attached with Ring

Q. 68 (1)

Secondary Amine is most Basic $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{NH}_{3}$
Q. 69 (1)

Sucrose is made up of c_{1} of $\alpha-\mathrm{D}$ glucose and C_{2} of β-D-fructose.
Q. $70 \quad$ (3) $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ is Blood Red in colour
Q. 71
(3) $\mathrm{H}_{2} \mathrm{~S}$ is Polar molecule.

Bent shape $\mu \neq \mathrm{O}$
Q. 72
(3)
Br_{5} is square bipyramidal \& $\mathrm{Sp}^{3} \mathrm{~d}^{2} \mathrm{Hyb}$
Q. 73 (2)

	Bond order
O_{2}	2
O_{2}^{+}	2.5
O_{2}^{-}	1.5
O_{2}^{-2}	1

Q. 74 (1)

	B.O
N_{2}	3
C_{2}	2
Li_{2}	1
He_{2}	0

Q. 75 (4) graphite has a higher C-C bond order than Diamand
(4)

(C)
Q. 77 (3)

Reactivity For ESR α e- density in Ring
Q. 78 (4)

All of these are aromatic
Q. 79 (1)
$\mathrm{CH} \equiv \mathrm{CH}$ has most acidic hydrogen .
Q. 80 (3)

Q. $81 \quad$ (4)
$\mathrm{Cl}>\mathrm{F}>\mathrm{O}>\mathrm{N}$
Q. 82 (3)

Fac.

Mer.
Q. 83 (4)

EDTA \rightarrow Lead Poisoning
DMG \rightarrow Detection of Ni^{2+}
$\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-} \rightarrow$ Electroplating with gold
$\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-} \rightarrow$ Black and white photography
Q. 84 (4) enthalpy $\mathrm{Cu}>\mathrm{Fe}>\mathrm{Co}>\mathrm{Ni}$ of atomisation
Q. 85 (1)

SECTION-B

Q. 86 (4)
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{x}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}^{0} \mathrm{x}_{\mathrm{B}}$
$\mathrm{P}_{\mathrm{Sol}^{10}}=\left[\mathrm{P}_{\mathrm{A}}^{0} \mathrm{x}_{\mathrm{A}}\right]+\left[\begin{array}{ll}\mathrm{P}_{\mathrm{B}}^{0} & \mathrm{X}_{\mathrm{B}}\end{array}\right]$
$=\left(200 \times \frac{10}{30}\right)+\left(100 \times \frac{20}{30}\right)=\frac{400}{3}$
Q. 87 (2)

Slow step is rate determining step. So order of reaction will consider for slow step
Rate Law (R) $=\mathrm{k}_{\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]}$
So order w.r.t $\mathrm{H}_{2} \mathrm{O}_{2}=1$
Q. 88 (3)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \& \mathrm{CH}_{3}-\mathrm{C}_{\mathrm{O}}^{-}-\mathrm{CH}_{3}$ Both will give iodoform test So cannot be distinguish from each other .
Q. 89 (4)

All type of carbonyl compounds give Alcohol on reaction with grignard Reagent followed by hydrolysis
Q. 90 (1)

More positive value of E^{0} more will be oxidising power. So Ag^{+}has highest oxiding power.
Q. 91 (2)

$$
\begin{aligned}
\mathrm{W} & =-2.303 \mathrm{n} \mathrm{RT} \log \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& =-2.303 \times 1 \times 0.082 \times 300 \log 2 \\
& =-2.303 \times 1 \times 0.082 \times 300 \times 0.301 \\
& =-17.1 \mathrm{~J}
\end{aligned}
$$

α-D-gluco Pyranose has . 5
Chiral carbon. Chiral carbon
Q. 94 (1)

$$
\mathrm{CH}_{4} \text { is electron precise hydride . }
$$

Q. 95 (2)

Pb is more stable in +2 oxidation state
Q. 96 (1)

Acidic Strength :-
Para- nitrophenal $>$ ortho nitrophenol $>$ metanitrophenol $>$ Phenol
Q. 97 (2)

Ununnillium $\rightarrow 110$
Q. 98 (2)

$$
\mathrm{Fe}^{+3}+\left(\mathrm{SCN}^{-}\right) \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{Fe}(\mathrm{SCN})]^{2+}}{\left[\mathrm{Fe}^{+3}\right]\left[\mathrm{SCN}^{-}\right]}
$$

The Red colour will increased in the reaction by formation of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ So By adding KSCN red colour increased

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{Fe}(\mathrm{SCN})]^{2+}}{\left[\mathrm{Fe}^{+3}\right]\left[\mathrm{SCN}^{-}\right]}
$$

The red colour wil increased in the Reaction by formation of $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ So By adding KSCN Red colour increased.
Q. 99 (1)

$\mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{CH}_{3}^{\oplus}$ electrophile
Q. 100 (3)

Q. 92 (4)
Q. 93 (2)

